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@UpMiA Overview of the lecture

Intro: Image classification or generation, solved by Deep Learning

A. Engineering Deep Neural Networks
1. Deep Neural Networks models. . .
2. ... that require many recipes to be trained.

B. Understanding Deep Convolutional Neural Networks
1. Convolutional layers in Convolutional Neural Networks
2. Invariant Representations and Deep Learning.

C. Under the hood of Neural Networks
1. Classification mechanisms
2. A mysterious black-box
3. Few results on shallow Neural Networks
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@ lipMLiA

Solving High-dimensional
tasks with DINNs



@ lipMLA

o R e ° : . Which color should be this
circle”

An example of supervised task: classification
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@iipmia High dimensional images !

e PdF's are difficult to estimate in high dimension.

N=1 N =2

e For a fixed number of points and bin size, as N
increases, the bins are likely to be empty.

Curse of dimensionality:
occurs in many machine learning problems



@LpMLiA Supervised task

X — R2 Samples space

Y = { 7'} Labels

representation

b7
Input data > Output data

reX Plx)~yec)

e LEstimating a label y from a sample z, by training a
model & on a training set. Validation of the model
is done on a different test set.

e Examples: prediction, regression, classification,. . .

e Best setting: dimensions of z and y is small, X’ large



@EPMIA  11ioh Dimensional

classification
(25, y;) € R2Y % {1,...,1000},i < 106 — §(x)?

Estimation problem

Training set to
predict labels

"Rhinos"

Not a "rhino"



@ LiPMLIA Simple example: digit-classification. 9

e How to address a supervised task: rRYq9a4 v
= A Y-y
1. Propose a model of your data.
777077177
Ex.: MNIST (60k samples) RIS 5seI B E
2. Design a representation. —

Small deformations

Achieves translation invariance, linearises deformations.

3. Propose a (convex) classifier.
Ex.: Linear SVM.

Displacement

[ () @ [

—>
S + projection . .o .

4. Obtain reasonable performances.



@lipMLiA In the following. ..

1. No model known on real images
2. Limited a prior:, except translation invariance
3. Learn each parameters. ..

4. Obtain the best performances

The reason of their success is unclear. ..

.10



@ipmia Large datasets...

e ImageNet 2012: (350GB)
I million training images, 1 000 classes Rt magecnetong

400 000 test 1mages
Large coloured images of various sizes

e Labels obtained via Amazon Turk (complex process
that requires human labelling)

w11


http://image-net.org

@ipmiia Difficult problems due to ™
Image variabilities

(Geometric variability Class variability

Groups acting on images:

. . . Intraclass variability
translation, rotation, scaling

- LR AN

Other sources : luminosity, occlusion,

Not informative

——ri
e |

small deformations

— (JJ

High variance: hard to reduce!




@LpMLA Desirable properties of a
representation

e Invariance to group G of transformation (e.g. roto-

translation):
Vr,Vg € G, P(g.x) = ®(x) A
_—®
e Stability to noise -
v, y, [ ®(x) — 2(y)ll2 < |z -yl
e Reconstruction properties (z)

y=®(z) <=1z =>0"(y)

e Linear separation of the different classes
Vi 7 J, || E(P(X5;)) — E(P(X;))][2 > 1
Vi,o(®(X;)) < 1 Can be difficult to handcraft..

.13



@ lipMLA

Years of
research. ..

Is this solvable?

THIS 1S YOUR MACHINE LEARNING SYSTEM?
V

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

l
WHAT IF THE ANSIERS ARE LIRONG? )

JUAT STIR THE PILE DNTIL
THEY START LOOKING RIGHT:

14



@ lipMLiA

Solving high-dimensional
tasks with deep learning

.15



@lipmiin Deep Learning

7 & DeepMind n

Deep Learning, 2015, Nature, LeCun, Bengio, Hinton

e Solve several high dimensional problems that
seemed intractable. Impressive benchmarks.

e Requires a huge amount of labeled data

e Generic and simple to deploy (present in many final
products) / requires a large expertise (highly
demanded profiles)

e Handcrafted features are not required: the algorithm
adapts itself to the specific bias of a task

.16



@ipMin A biased history of -l
Deep Learning

Hinton scaling

LeCun designing Bengio starting
NN I N
C'NNs DL libraries CNNs to ImageNet AlphaGo
Neural winter Neural winter

1980 \ 1990 2000 2020
1it’s g0 slow" "kernels are Transformers
provably better" (text)

(GANs

(vision)



@1iPMLIA What matters in deep learning?.""l-f

° Accuracies! (you probably heard about it during Prof. Banerjee’s talk)
O Handcrafted ©O DeepNet

super-human

% accuracy

ImageNet:

------------------------------------------------------------------------------------------------------------------------------------------- 1 million training

AlexNet images, 1 000 classes
60 400 000 test images
2010 2011 2012 2013 2014 2015 2016 2017 Large coloured images

of various sizes

topo - ImageNet

Theory for good performances?



@1Lipmiin Face recognition

z |\ ﬁ
p—— \ |
2|\ 4l
< \/ | o
’_ 4‘ '\
u2J =
wl A\ 1O
w ," ',I | Lis
|/
o ‘
= .« et al.
&L _ c1: M2 c3: L4 LS: L6: F7: F8
Calista_Flockhart_0002 P9 Frontalizaton: I2x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x/x7x16  16x5x5x16 4096d 40304

Detection & Localization @152X152x3 @142x142 @71x71 @E3x63 @55x55 @25x25 221X21

Are two pictures corresponding to the same person?
Above human performances in rough conditions

Who's in These Pholos?
o tsciasitla's o Ref.: DeepFace: Closing the Gap to Human-Level Performance in Face Verification

Trep~o0os wo. Lpizadnd ware ¢ oupad Mo aticn o S0 pou car quich s late anc rot v It encs inteer tichures .
0 wande ean abanys o Poereabia | Taigman et al.

Wineld wiale:




@iipmiia Colorizing B&W pictures?®

Colorful Image Colorization, Zhang et al.

Lightness L Color ab Lab Image
— convi convZ conv3 conv4 convhs conve conv’7 conv8 '
atrous / dilated atrous J cilated

64
128 256
— 256 512 512 512 512 J
Py r / = 2
[ ] f) J| i
64 32 32 32 32 32 64
128 .
(a,b) probability i
distribution

Coloring an image by hand takes several weeks



@ lipMLA

Spectacular results in face generation.

.21




@iipmia Outstanding benchmarks

in text understanding/translations .

e Translation (Google uses Recurrent Neural Networks):

-+

Translation quality
N &)

G

perfect translation

neural (GNMT)

phrase-based (PBMT)

English  English  English  Spanish  French  Chinese DeCOdeI'
Spanish  French  Chinese  English English English
Translation model
Encoder

Applications for HR: sorting CVs

Lel|..

!

NN|PINN

NN

» NN

>

NN

N~

.’

NPINN

.>

L 2

NN

TTTT

!

The “Cat 1S

yellow

or{ ..

.22



@ 1ipMLiA Surprising results in 2
text, image & (source) code generation

e Generating source code via Recurrent Neural
Net WOI‘kS . http://karpathy.github.io/2015/05/21 /rnn-effectiveness/

static void stat PC SEC read mostly offsetof(struct seq argsqgueue, \
pC>[1]);

static void

os_prefix(unsigned long sys)

Real one? (

PUT PARAM RAID(2, sel) = get state state();
set pid sum((unsigned long)state, current state str(),
(unsigned long)-1->1r full; low;



@iipmia Outstanding results with
Game Strategy

- Game of GO: completely impossible to solve with
pure Monte Carlo tree search

Ref.: Mastering the Game of Go with Deep Neural Networks and Tree Search

Silver et al. ‘ N Roll out with
oy NNs

» 00:07:00

® FY 1 1 -+
I ‘
@ /LPHAGO » rv ey &
00:10:29 { ] 1 ¢ LEE SEDOL
O O A / Nl I ) ‘

NN: computes a proba to win
for each of the 2'9° nodes

Self driving cars, Starcratft. . . b DeepMind




@1ipMLiA Outstanding results in Style 25

Transfer
arg min || @z — ®z||? 4+ \||Cov(®y)) — Cov(®7)||?
X Original image Style transfer
Input Target style Output

o

Ref.: Deep Photo Style Transfer, Luan et al.

Direct applications in Web design. ..



Engineering Deep Neural Networks




@ lipMLA

Neural Networks

21



@iipmia Multi-Layers Perceptrons?®

input signal output signal
r — Wy P Wy b ... —[p— W, — ®(x)
L0 >1 >}>1 >1— — L —>1 >}>1 >
rjy1 = pWa, ezt =P Wikt
)

No a prior: is introduced here. Typically used as a classifier.
Note that (I)(Qj; Wi, ..., WJ) is non-convex in x or each Wj

where:  p(2) = max(0,2) st |p(x) — p(y)| < |z —y|



@lipmia Convolutional Neural
Networks

input signal

r— Wi — Wa

/
Schematic . “
A o —_— )

ﬁ [ ) [ ] °

output signal

—

0

—»

Wy — @(x)

—\ \
224 , L 3‘

A \ ) N — | '13

Engineering \adg L - _\,- -
\ '-._ = 58 l
.\ .
323.&@. ht dé!\ Max 170 Max
"‘-of PR paoling pooling

Each layer:

that leads to: -Tj—l—l(ua >‘j—|—1) — P(

Sometimes some "pooling" are incorporated, mainly for speed purposes.

Lit1l — ,OWj$j

>

Aj

:Cj(.,)\]) *w>\ A

learned kernel

Again, this leads to a non convex loss.

.29



@ lipMLA

Automatic Differentiation

.30



e s ° ° e o 31
@UPMLA Minimising a non-convex loss™”

e In a typical supervised task, one aims at minimizing:

parameters of each layer

Lo \ O = (6, 0
L(@) — K(Q@(wz),yz) -+ —H@H2 ( 1y eeey J)
L= \52 regularisation or weight decay

e For instance, for obtaining a prediction, one minimizes the
Cross-Entropy:

(®(2),y) = ~0(@)y] +log (3 exp(@(@)[j])

where: number of classes

/

At prediction time, one picks:

y = arg max ®(x)|c|
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@1ipmia Minimization procedure

e Typically done via Stochastic Gradient Descent (Prof.
Dieuleveut’s talk), where the gradient is given by:

B
1
9(0) = D VIO, )
b=1 with N uniformly sampled from {17 XX n}

leading to: E|g(©)] = VL(O)

e And one iterates from a random initialisation Q:

Oir1 = O — 1 g(O4)

e Many variants of this optimization: Momentum,

ADAM., ...

SGD without momentum SGD with momentum
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@ipmia Tree of computations

@ 2\2
flz) = (1+27)
(I3
() & ¢
61 05
_ O
f(©) = fa([f3(f1(01), f2(62)))
O = (01, 0-) (5
(1) z
LY 1(0) = £l Fa(f2(1(6)))
@ How to compute fast gradients?
‘9 fi, Ofi computed in (’)(??)




@ipMia Computing a gradient?
e No a priori on the operations involved: finite

scheme difference
o For a gradient f'(6) = f6 5592 — /) -o(1)

Yet: can be unstable and requires multiple calls to f

Ref.: Gabriel Peyré’s slides at the Mathematical
Morning coffee

e Back-propagation algorithm for a tree: Mathiow's Blouebl pouching about AD

(fog)(x) €ER leadsto V(fog)(z)=[dg](x)" Vf(g(z))

(fl o fg O fs)(CE) € R leads to

V(fio fao f3)(x) :I [3f3]($)|Tl[3f2](fl(iU))lTlvfl(fl 0 f2(5’3))|

How to compute this quantity efficiently?




ipMLi : i
@UPMLA  Fast-computations |
e Assuming that: £, R™ —y RMi+
e Computing each Jacobian is about O(n;n; 1)

e Multiplying a matrixm X n with a n X pcosts O(mnp)

e It also induces a substantial memory saving. . .

forward | T
—

backward




@lipMLiAa Back-propagation computationé"*g.f

T— Wi ={pl=|Wo = ... —=[pl—=| W, —=loss(z,y)= ¢
A A Al
_A(pWy)” AN
— vﬂﬁj (g) — ailfj vxj+1 (8) v ij (5) — 8(9] vxj+1 (5)

o Automatic-differentiation fits well Deep Learning!

e Note the lock that can make distributed optimization
dlfﬁClllt Ref.:Decoupled Neural Interfaces using

Synthetic Gradients, Jaderberg et al, 2017

e How is it implemented?



@iipmia A single "deep" module

Forward: ..
) —p —_— Tj+1
INoss w] Backward:
Iz, < Oloss
l 0T;j+1
Oloss  0Oloss dx; INoss
ow; dr; Jw; - Gradient w.r.t. parameters
7

Oloss  Oxjy1 0Oloss

833‘]' (9£Ej 6:1:j+1



@1ipMLiA CUDA, GPU

8 (GPUs were for video-games
which require fast graphic
rendering!)

e Deep learning algorithms rely a lot on linear operations.
(ex: convolutions)

e CUDA routines permit to implement efficiently linear
algebra routines: min. speed up of 100.

e GPUs are now super mainstream. . .

e It’s not unusual to have a 1'TB GPU memory. @

NVIDIA.




@ lipMLA

Training Pipeline

.39

e Once the model ®(x;0) and the loss { is fixed the model is

trained via mini-batch:

O'tt = 0' — a.g(0t, data)

Splitting dataset
into batches of size

2560 g Error
l backpropagated
_ Signal
200 P propagated
] Typical training time on imagenet: 100 epoch
— . about 13}71(;111' per epoch
E— 1 —
I training
m— v 1 (92
] Error
]
l l
]
E— A, A S
| ] I el
CPU GPU



L

NVIDIA.




@LipMLA Cooking recipe o

e Batch-normalization

e Data augmentation

CIFAR-10 Accuracy
i train VGG+BN+Dropout —
® DI‘OpOU.t - test VGG+BN+Dropout
120 : train VGG+BN —
i test VGG+BN
L . t i train VGG+Dropout —
¢ ea’rnlng rate T test VGG+Dropout
100
e Let it overfit!]
80 4
EEETENHEE=SS
PmBNEL FEEE
FEGHSAEEP -
SR ESTERE ) |
AE-s BRI |
nEEHRSaNE |
EREEPPRESE Y — 00—
EEE.‘EE!‘ 0 50 100 150 200 250

Wi N =S ESEE epochs




e The strength of DL

e Data? Computer power? Not only:

e Flexibility& modularity: quickly benchmarking non-
linearity, layer dimension, losses, batch size, learning rate
schedule. ..

e Is it overfitting? Clearly, yet the representations learned
are empirically excellent and used in many cryptic
applications.

.42



Understanding Convolutional

Neural Networks

.
v - - ~ . .

# ==\ N\

V¥
Yrrri1s




@ lipMLA

Convolutional layers in CNNs

.44



@Lipmiia Why convolutions?

(axb)(u) = /a(u —v)b(v) dv = number of channels

Let a linear operator: |}/ : 22({17 - n}k)dl — 52({17 .. n}k)d2
Ly : 62({1, . n}k)dl N 82({1, )W size of an image
Lo : 2({1,..,n}*)% — 2({1, ..., n}k)
where L;x|u, j| = z|u + 1, J]
e Lemma: \ translation operator

Wil = LW <— WZC[U,]] = Z (ki,j * :1:) [u, Z]

i p |z (w)]
e Fourier analysis!!
TR (W) = #(w)i(w) » A
w>
Regularity corresponds to a fast decay
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.46

soag \dense

>
dense

128

A short analysis of an AlexNet

Mz X

pocling

2048

>
dense

2048

1000



@1ipmia Model for the first layer

Ref.: T Waldspurger’s phd

UI

IIII\\‘
l"?l[- |f

N / 15 filters
This principle is core / ,

in many models £ / —— 19 filters
(V1, Scattering,... ) j TV "T“




@lipMLiA Wavelets

e 1 is a wavelet iff/@b(u)du = 0 and /|¢|2(u)du < 00

e Typically localised in space and frequency.

Group action!
o Rotation, dilation of a wavelets: " Voo

Vi = 2% (192(;6)) " "

e Design wavelets selective to rotation variabilities.

N | w | Non-Isotropic

Isotropic ‘ ‘ w ‘ VS -



@ lipMLA

The Gabor wavelet

(for sake of simplicity, formula
are given in the isotropic case)

.49



@iipmia  Wavelet Transform

.50

o Wavelet transform: Wz ={x %9,z % ¢J}9,j§a}£

e Isometric and linear operator of Liwith (W v g

el = 3 [lesviol+ [ovos _Watps

0,9<J

.
o Covariant with translation L " ‘

WL, = LW » .

e Nearly commutes with diffeomorphisms

e A good basel

W, L ||| < Cl[V7]

Ref.: Group Invariant Scattering, Mallat S

ine to describe a signal (here, an image)!



@1iPMLAZoom on the parametrisatior’
he fi.

e Very often, t

and are interl

Y, Air1] = Zx

e Similar to a Wavelet Transform.

aced

with downsampling.

*]C)\ i1, [2%]

7

‘ > U

A

ters of a CNN have a small support (3x3)

2




@iipMin oo
From wavelet to Scattering

T T 371 . Order 2
J:3,96{074727 4} \ Order 1

To L2
O Modulus T

Has many h >0 Scattering coefficients

Invariance properties are only at the outpu

Scattering as a CNN

Ref.: Deep Roto-Translation Scattering
for Object Classification. EO and S Mallat
Recursive Interferometric Representations, S Mallat



@ipMLiA A successful representatiori:
in image classification

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

e Successfully used in several applications: All variabilities

TR,
e Digits 5 s

are known

4 4 ¥ & Y
S5 58§ T~
17777
{ 3 E€ § &

Small deformations
+Translation

tion+Scale

e Textures

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L and Mallat S.

e The design of the scattering transform is guided by the invariance to
Fuclidean groups and deformations

e To which extent can we compete with other architectures on more
complex problems (e.g. variabilities are more complex)? (still open!)



@ lipMLiA

Invariant Representations
and Deep Learning

.54



@ lipMLA

Translation

XL

: Rotation :

y

AR

y

Deformations
L:x(u) =x(u— 7(u))

(1)
AN

|z —yll2 = 2

v
Averaging is the key
to get invariants

High dimensionality issues

.55



@1ipmiina : :
Group invariance

e The notion of convolution can be easily extended on a
compact group or a Lie group G via a Haar measure.

e It is the only measure invariant by (left) translations,
i.e., L.p = p which allows to introduce:

L2(Gu0) = {1, [ 1fPd < o)
e And thus the convolution operation:

axb(g) = /G a(g)b(3~ " g)dp(g)

e and some Fourier analysis (on Lie groups):

. 2 I
P - Gg: £ (G) — @WEK invariant subspace
g

of the representation

.56



@lipmia Covariance via convolution™”

e We say that L is covariant with Wit WL = LW

example: convolutions!

e We say that A is invariant to L if AL = A

e If W (e.g., convolution), p (e.g., point-wise non-
linearity) are covariant and if A is invariant to L then
by = AWJ,OWJ_l,OWJ_Q...W1$
is invariant. Indeed:
OLxr =ALW;ip. Wiz = x
e It is also possible to have only an approximate

covariance and one measure it via the norm of:

W,L| = WL — LW
example: deformation (ﬂ T)



@iipmiin o
Symmetry group hypothesis

Ref.: Understanding deep
convolutional networks
S Mallat

e To each classification problem corresponds a
canonic and unique symmetry group G-

Ve, Vg € G, Px = Pg.x \

High dimensional

e We hypothesise there exists Lie groups and CNNs

such that:
GocGicCc..cGjyCd@d

vg; € Gj, ¢j(g;.x) = ¢j(x) where z; = ¢;(x)

e kixamples are given by the euclidean group:
G() — Rz,Gl = G() X SLQ(R)



@ipMin An example: the roto-
translation

Ref.: PhD of L. Sifre

e If the convolution is defined on G, G, one can

extend 1t to GxG.GxG

e Roto-translation (or rigid motions) is a non
commutative group:

(u,0).(7,0) = (u+ roi, 0 + 0)

e ... and this leads to the following convolution:
Y & 0)(g) = | V(g gy

g/



.60

@iipmia Progressive Invariances

v

e Interestingly, CNNs often incorporate some poolings
which satisty for |1 — L|| < 1: PL~=P.

)

e It allows to progressively induce more invariance. (and
it’s very similar to a Wavelet Transform)

e Similarly, the non-linearity is point-wise. Interestingly,
point-wise non-linearity are the only non-linearity p
that commutes with deformations, ie

oL = Lp iff Vo= (x1,...,2q),p) = (p(x1),..., 0(xq))

Ref.: Phd of Joan Bruna



@1iPMLA How to address deformations;?'ﬁ.l.,

e Weak differentiability property:

OLx — P
sup | Lx d < o0 = 4 "weak” 0,P
r Lz —z = OLxr ~ Ox —|—|a;uq)L|‘|‘ o(|| L)

, A linear operator
Displacement [, P

e A linear projection (to kill L) build an invariant

()] o
— ¢
+ projection o




@iipmiia Invariances via wavelets

Deformatlons
L.x(u) =x(u— 7(u))

(1)

e Analytic wavelets permit to build stable invariants

tO: Ref.: Group Invariant Scattering, Mallat S

- small translations by a:

/\

Loz % (W) = € 3 (w)i(w)

wla)(w) ~ wl a)(w)

The variability corresponds to a phase multiplication!

- small deformations:

|(Lrx) x 9 — Le(zx )| < CV||7][o



Under the I'.-i'ood of Neural
Networks

Cr= [ Il £l e




@ lipMLA

Classification mechanism

Y



5

@ LIPMLiAFighting the curse of dimensionalit: v

e Objective: building a representation ®x of x such that a
simple (say euclidean) classifier §j can estimate the label

e Designing ®: must be regular with respect to the class:
[Pz — P2’ || K 1= g(x) = g(z)
e Necessary dimensionality reduction and separation to

break the curse of dimensionality:

TATG




@1UpMiA Model on the data: low %
dimensional manifold hypothesis?

e Low dimensional manifold: dimension up to 6. Not higher:

Property: if f: R” — [0, 1] is 1-Lipschitz, then let
N = arginf y sup,;< (|f(z) — f(z:)| <e).

Then N, = O(e™P) A/\\

e Can be true for MNIST. .. T
¥ HA4aqa4d ¥ sy All variabilities
5 5 N & S S5 5§ » are known
7 7 '7 7 7 7 " 7 7 7 '\Small "limited" deformations
<L g & 5 & 4 ® < 4 g +Translation

e Yet high dimensional deformations are an issue in the

general C?Se! i (ﬂ ) | T o—




@ lipMLA

(c) Object color

Flattening the space:

.67

progressive manifold?
e Parametrize variability on synthetic data: Lg, 0 € R?

and observe it after PCA

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

== "x‘ -
o L W
§oimy ° -
p B8y g T - —
=] = =] L - - - =
i‘ . l.{,;!“ '!J*' .o o
E oy b =8
=T - Ml b
(d) Background color (a) Lighting (b) Scale

e Data tends to live on flattened space. Tangent

space”’

narn walged
'Y (@]
. N “a wWOon. .
king . C O °
't. walking k.,
cueen —
- ol winming
Male-Female Verb tense

Difficult to find evidences

Qunooest,
pain ~_
—
¥ m——— T Madrid
— Rone

Russis

11111

Country-Capital
of such phenomenon
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@LpMia Mechanism proposal:
Flattening the level sets

— class 2 Amenable for any supervised task!

Ref.: Understanding Deep Convolutional Linear invariant can be Computed!
Networks, Mallat, 2016

e How to linearize? Ex.: Gateaux differentiability

| Pz — DT x|
34C, sup
U I'T]
e However, exhibiting T~ can be difficult. (curse of

<Cp = 300,: Tz~ dx+ 0P,.T

dimenstonality) R
Ex.: linear translations 7, (ZIZ‘) (u) — x(u -+ CL) , yet non linear case?



@ 1ipMLiA Empirical observation: 69

Progressive separability

e Typical CNN exhibits a progressive contraction &
separation, w.r.t. the depth:

[ [ ] pW
1 ® °
o o ©® > o o sz . ,OW13 > ....
RD ° e °
o SVM NN In the following, representations are spatially averaged.
100 : : : : :
Best performange |
20 I Nearest Neighbor (NN)
- ° Gaussian SVM
) ® (]
< ° ® - o o °
“ o o ©
o ® < ¢

30

1 2345678 9101112
Depth

e How can we explain it?

Localised classifiers

Ref.: Building a Regular Decision Boundary with Deep Networks, EO



@ lipMLA

A mysterious black-box

70



71

@iPMiA  Concept of neuron?

e Consider: v & Rwoo Ly = arg max(CI)x U>
TED < dataset

e Claim 1: v = (0,...,0,1,0,...,0) has a semantic
meaning

Ref.: Intriguing properties of Deep Neural
Networks, Szegedy et al.

e Claim 2: any unit norm v has a semantic meaning.

G gy T Sg NN
QI 8 A

(a) Direction sensitive to white, spread

flowers.
/ ' | : ‘l‘ o= —“
" / 3; >

(¢) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown
heads.




@ipmin Adversarial examples

“panda” “gibbon”

57.7% confidence 09.3% confidence

e NNs are super sensitive to input noise

e Indeed, the NN is at most |[W;

W ||-Lipschitz

Ref.: Lipschitz Regularity of deep neural

. networks, Scaman and Virmaux
inf €]
D () £ (w+e)
Or even for every class, there are Thresher @ Labrador
algorithms with parameters (G, /i) S.t.: N
- Flagpole Labrador
P(O(X +6)#B(X)) >1—& =
HéH < € % Tibetan mastiff B Tibetan mastiff
— 2

Ref.: Universal adversarial perturbations,
Moosavi et al.
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@1pMLiA Reconstruction from a

given layer?
Xo—| Wi |—{p}— W> o P Wy — ®(x)

Learn the operators!

~

CONV1 CONV2 CONV3 CONV4 CONVS

ﬁ
o
I
=

Iﬁfl
I»Fl

Ref.: Inverting Visual Representations with
Convolutional Networks, Dodovistky et al.



@1ipMiiAa Reducing mutual information
(Information bottleneck)

e Reducing the information sounds relevant:

p(x,y)
I(X;Y)Z/ p(z,y)log dzdy = H(X) — H(X|Y)
RQ p(x)p(y) Ref.: Opening the Black Box of Deep Neural Networks via

Information, R Shwartz-Ziv and N Tishby

Measures the dependancy between variables

[(X;®1X) > I(X; X)) > ... > I(X; P, X)

"Compress" X
I(X;Y) > [(®1X;Y)> ... > [(®,X;Y)
but "reveal" Y

They propose to introduce:
(I)j,A — alr'g i%f[(q)j_lX, (I)]X) — )\I((IDJX, Y)

e But one can easily build invertible CNNs. ..

Ref.: i-RevNet: Deep Invertible Networks, J Jacobsen et al.
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s li» - ﬂa s Dl l
R AR AR Ml

's ° Y* .
]:'ﬂ, 1 Ref.: i-Revnet, depp invertible
J+ networks Jacobsen, Smeulder and
EO

Z j Lj+1



@ lipMLA

One study case:
1-hidden layer NNs
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@ipmia  1-NN on the sphere 7

e 1l-hidden layer neural networks are one of the simplest instance
of Neural Networks. A real valued 1-NN writes:

— ZO&Z',O(<£U, 92>) where X & B(O, 1), (aiygi) c R % ]Rd
1<n

o If pis homogeneous i.e. V) > 0,Vz € R, ,Q(\Ax) = A\p(x), we get:
ZQ’LHH ||/0 ||(9 H>) Rel.U!

1<n
_ / p((.0)) dpia(60) with tin = D i03]3
Sa—1 1<n
o Then let |t| = \/ 1 — ||x||? and let: P e

b((x,1)) 2 |t\<I>(;) = 0(@)ift>0 | 7 b
e We thus have a function parametrised by a measure of the
sphere and defined over the sphere S 1! ru. b i cuse of dimensonaiy wit

neural networks, F Bach
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@ipMin  Convolutions on r2(s%)

o Instead to consider finite measures p € M(S% 1), consider as
a reference measure the uniform measure o and:

LS = { p|* do < oo}
Sd—1

which 1s Of the type: dlu/ p— p dO' (no dirac!)

e And we study approximation of fregular enough of the type:

Ve €S d_l, convolutions!

/
f@= [ ol 0)p(0)do = popia)

/ \

regularity to define well defined because

P 1s bounded



@ipmin 1-NN Approximation 7

Z(w)]

Fourier analysis-like

" can be done on S¢—1

via spherical harmonics

9 _
et Dad
threshold WSS
Allows to derive WL 2 & P20
approximation bounds ) QS x' % 3* ’3‘ %& %fm
of Lipschitz < WP IL L & & 36 9 o3 o

functions with p & p

Rates: for functions p of L° (S d_l) and € > 0, we can find a finitely
supported [t such that for x € S a—1. Ref: Breaking the curse of dimensionaliy with

(po)(@) = [ pl.0))du(0)] < el
and 4 (Support () < C(d)e 5



@ipmia  1-NN Optimization ¥

e Lazy training: the idea that neural networks behaves like
their linearised counter part due to rescaling effects in the

asymptotic regime.
linearisation: $(O) ~ P(Og) + (O — @O)TV(I)(@O)
1
P(x) = v(n) Z a; p({x,0;)) then y(n ) = laziness

1<n
Ref.: On Lazy Training in
Differentiable Programming, Chizat et al.

e Optimization of 1-NNs via optimal transport: many
asymptotic results (global optimum!) if the non-linearity is

Ref.: On the global convergence of gradient descent

homo eneous . f for over-parameterized models using optimal
g haS 5 NEeurons transport, Chizat and Bach
e, i
I - ,?";.'.- il
b

-—= cptimral postiars
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@iipmiia Limit: the Power of depth™

Ref.: The Power of Depth for Feedforward
Neural Networks, R Eldan and O Shamir

e Under non-restrictive assumptions (e.g., satisfied by ReLU)
on p, there exists constant ¢, > 0, such that for any

dimension d, there exists a measure i and g : R 5 R
such that

e ¢ is bounded, with support in B(0, C'\/E) and can be
approximate by a 3 layers NN with a polynomial width.

e BUT any 2 layers NN ¢ such that/ f = 9\261# <c

has an exponential width.




@ lipmiin o
More about my research

e Asynchronous Distributed Optimization (might have some funded

positions SOOH)
e Interpretability in Deep Learning
e Interferometric Graph Transform (= Scattering for Graphs)

e Tabular data



@ lipMLA Conclusion e

e Deep learning is a super excited topic because of it solves
many tasks. ..

e ... yet much has to be done to understand it much
better.

e Resources:
https://edouardovallon.github.io, papers, codes
https://edouardovallon.github.io/MAP670R-2020/
notes.pdf, more about 1-NNs and Deep Learning theory!

Thanks for your attention!


https://edouardoyallon.github.io
https://edouardoyallon.github.io/MAP670R-2020/notes.pdf
https://edouardoyallon.github.io/MAP670R-2020/notes.pdf

