Hi! Paris 2021:

Deep Learning: beyond TensorFlow

(followed by a lab' on i-NNs with TensorFlow)

Edouard Oyallon

edouard.oyallon@lip6.fr

CNRS, LIP6

Overview of the lecture

Intro: Image classification or generation, solved by Deep Learning

A. Engineering Deep Neural Networks

- 1. Deep Neural Networks models...
- 2. ... that require many recipes to be trained.

B. Understanding Deep Convolutional Neural Networks

- 1. Convolutional layers in Convolutional Neural Networks
- 2. Invariant Representations and Deep Learning.

C. Under the hood of Neural Networks

- 1. Classification mechanisms
- 2. A mysterious black-box
- 3. Few results on shallow Neural Networks

Introduction to high-dimensional tasks

4444444444 5555555 777777777 8888888888

Understanding Convolutional Neural Networks

Engineering Deep Neural Networks

Under the Hood of Neural Networks

$$C_f = \int_{\mathbb{R}^D} \|\omega\|_1 |\hat{f}(\omega)| d\omega$$

Solving High-dimensional tasks with DNNs

An example of supervised task: classification

• PdFs are difficult to estimate in high dimension.

• For a fixed number of points and bin size, as N increases, the bins are likely to be empty.

Curse of dimensionality: occurs in many machine learning problems

Supervised task

$$\mathcal{X} = \mathbb{R}^2$$
 Samples space $\mathcal{Y} = \{\bullet, \bullet\}$ Labels representation Φ ? Output data $x \in \mathcal{X}$ $\Phi(x) \approx y \in \mathcal{Y}$

- Estimating a label y from a sample x, by training a model Φ on a training set. Validation of the model is done on a different test set.
- Examples: prediction, regression, classification,...
- Best setting: dimensions of x and y is small, \mathcal{X} large

High Dimensional classification

$$(x_i, y_i) \in \mathbb{R}^{224^2} \times \{1, ..., 1000\}, i < 10^6 \longrightarrow \hat{y}(x)$$
?

"Rhinos"

Estimation problem

Training set to predict labels

"Rhino"

Not a "rhino"

EPMLA Simple example: digit-classification...

- How to address a supervised task:
 - 1. Propose a model of your data.

Ex.: MNIST (60k samples)

2. Design a representation.

Ex.: SIFT, Bag-of-Words

3. Propose a (convex) classifier.

Ex.: Linear SVM.

··· Displacement

4. Obtain reasonable performances.

In the following...

- 1. No model known on real images
- 2. Limited a priori, except translation invariance
- 3. Learn each parameters...
- 4. Obtain the best performances

The reason of their success is unclear...

Large datasets...

- ImageNet 2012: (350GB)
 1 million training images, 1 000 classes
 400 000 test images
 Large coloured images of various sizes
- Labels obtained via Amazon Turk (complex process that requires human labelling)

•

Ref.: image-net.org

Difficult problems due to Image variabilities

Geometric variability

Groups acting on images: translation, rotation, scaling

Other sources: luminosity, occlusion, small deformations

Class variability

Intraclass variability

Not informative

Extraclass variability

High variance: hard to reduce!

EPMLA Desirable properties of a

representation

• Invariance to group G of transformation (e.g. rototranslation):

$$\forall x, \forall g \in G, \Phi(g.x) = \Phi(x)$$

• Stability to noise

$$\forall x, y, \|\Phi(x) - \Phi(y)\|_2 \le \|x - y\|_2$$

• Reconstruction properties

$$y = \Phi(x) \Longleftrightarrow x = \Phi^{-1}(y)$$

• Linear separation of the different classes

$$\forall i \neq j, ||E(\Phi(X_i)) - E(\Phi(X_j))||_2 \gg 1$$

Can be difficult to handcraft.. $\forall i, \sigma(\Phi(X_i)) \ll 1$

Is this solvable?

Years of research...

Solving high-dimensional tasks with deep learning

Deep Learning

Deep Learning, 2015, Nature, LeCun, Bengio, Hinton

- Solve several high dimensional problems that seemed intractable. Impressive benchmarks.
- Requires a huge amount of labeled data
- Generic and simple to deploy (present in many final products) / requires a large expertise (highly demanded profiles)
- Handcrafted features are *not required*: the algorithm adapts itself to the specific bias of a task

A biased history of Deep Learning

What matters in deep learning?

(you probably heard about it during Prof. Banerjee's talk) Accuracies!

top5 - ImageNet

<u>ImageNet:</u>

1 million training images, 1 000 classes 400 000 test images Large coloured images of various sizes

Theory for good performances?

Face recognition

Are two pictures corresponding to the same person? Above human performances in rough conditions

Ref.: DeepFace: Closing the Gap to Human-Level Performance in Face Verification Taigman et al.

EDMIA Colorizing B&W pictures 20

Colorful Image Colorization, Zhang et al.

Coloring an image by hand takes several weeks

Spectacular results in face generation.

Outstanding benchmarks in text understanding/translations

Translation (Google uses Recurrent Neural Networks):

Surprising results in

text, image & (source) code generation

• Generating source code via Recurrent Neural

Networks:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

```
#define REG_PG vesa_slot_addr_pack
#define PFM_NOCOMP AFSR(0, load)
#define STACK_DDR(type)
                         (func)
#define SWAP_ALLOCATE(nr)
#define emulate sigs() arch get unaligned child()
#define access rw(TST) asm volatile("movd %%esp, %0, %3" : : "r" (0));
 if ( type & DO READ)
static void stat PC SEC read mostly offsetof(struct seg argsqueue, \
         pC>[1]);
static void
os_prefix(unsigned long sys)
#ifdef CONFIG_PREEMPT
 PUT_PARAM_RAID(2, sel) = get_state_state();
 set_pid_sum((unsigned long)state, current_state_str(),
           (unsigned long)-1->lr_full; low;
```

Real one?

CIPMLA Outstanding results with Game Strategy

Game of GO: completely impossible to solve with pure Monte Carlo tree search

Ref.: Mastering the Game of Go with Deep Neural Networks and Tree Search

Roll out with NNs

NN: computes a proba to win for each of the 2^{196} nodes

Self driving cars, Starcraft...

CIPMLA Outstanding results in Style Transfer

$$\arg\min_{\tilde{x}} \|\Phi x - \Phi \tilde{x}\|^2 + \lambda \|\operatorname{Cov}(\Phi y)\| - \operatorname{Cov}(\Phi \tilde{x})\|^2$$

Input

Target style Φy

Ref.: Deep Photo Style Transfer, Luan et al.

Direct applications in Web design...

Introduction to high-dimensional tasks

Understanding Convolutional Neural Networks

Engineering Deep Neural Networks

Under the Hood of Neural Networks

$$C_f = \int_{\mathbb{R}^D} \|\omega\|_1 |\hat{f}(\omega)| d\omega$$

Neural Networks

EPMLA Multi-Layers Perceptrons 28

No a priori is introduced here. Typically used as a classifier.

Note that $\Phi(x; W_1, ..., W_J)$ is non-convex in x or each W_j

where:
$$\rho(x) = \max(0, x)$$
 s.t. $|\rho(x) - \rho(y)| \le |x - y|$

input signal

EPMLA Convolutional Neural

output signal

Engineering

Each layer:

$$x_{j+1} = \rho W_j x_j$$

learned kernel

that leads to:
$$x_{j+1}(u, \lambda_{j+1}) = \rho \left(\sum_{\lambda_j} \left(x_j(., \lambda_j) \star w_{\lambda_j, \lambda_{j+1}} \right)(u) \right)$$

Sometimes some "pooling" are incorporated, mainly for speed purposes. Again, this leads to a non convex loss.

Automatic Differentiation

IPMLA Minimising a non-convex loss.

In a typical supervised task, one aims at minimizing:

$$L(\Theta) = \frac{1}{n} \sum_{i \leq n} \ell(\Phi_{\Theta}(x_i), y_i) + \frac{\lambda}{2} \|\Theta\|^2 \quad \Theta = (\theta_1, ..., \theta_J)$$

$$\ell^2 \text{ regularisation or weight decay}$$

For instance, for obtaining a prediction, one minimizes the Cross-Entropy:

$$\ell(\Phi(x), y) = -\Phi(x)[y] + \log\left(\sum_{j} \exp(\Phi(x)[j])\right)$$
 where:
$$\Phi(x) \in \mathbb{R}^{C}$$
 number of classes
$$y \in \{1, ..., C\}$$

At prediction time, one picks:

$$\hat{y} = \arg\max_{c} \Phi(x)[c]$$

Minimization procedure

• Typically done via Stochastic Gradient Descent (Prof. Dieuleveut's talk), where the gradient is given by:

$$g(\Theta) = \frac{1}{\mathcal{B}} \sum_{b=1}^{\mathcal{B}} \nabla \ell(\Theta, x_{N^b})$$
with N^b uniformly sampled from $\{1, ..., n\}$
leading to: $\mathbb{E}[q(\Theta)] = \nabla L(\Theta)$

• And one iterates from a random initialisation Θ_0 :

$$\Theta_{t+1} = \Theta_t - \eta_t g(\Theta_t)$$

• Many variants of this optimization: Momentum, ADAM, . . .

PMLA Tree of computations

$$f(\Theta) = f_4(f_3(f_1(\theta_1), f_2(\theta_2)))$$

$$\Theta = (\theta_1, \theta_2)$$

$$f(x) = (1 + x^2)^2$$

How to compute fast gradients? $f_i, \partial f_i$ computed in $\mathcal{O}(??)$

EPMLA Computing a gradient?

- No a priori on the operations involved: finite scheme difference
- For a gradient $f'(\theta) = \frac{f(\theta + \delta\theta) f(\theta)}{\delta\theta} + o(1)$ Yet: can be unstable and requires multiple calls to f
- Back-propagation algorithm for a tree:

Ref.: Gabriel Peyré's slides at the Mathematical Morning coffee Mathieu's Blondel teaching about AD

$$(f \circ g)(x) \in \mathbb{R}$$
 leads to $\nabla (f \circ g)(x) = [\partial g](x)^T \nabla f(g(x))$

$$(f_1 \circ f_2 \circ f_3)(x) \in \mathbb{R}$$
 leads to

$$\nabla (f_1 \circ f_2 \circ f_3)(x) = [\partial f_3](x)^{\top} [\partial f_2](f_1(x))^{\top} \nabla f_1(f_1 \circ f_2(x))$$

How to compute this quantity efficiently?

Fast-computations

- Assuming that: $f_i: \mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$
- Computing each Jacobian is about $\mathcal{O}(n_i n_{i+1})$
- Multiplying a matrix $m \times n$ with a $n \times p$ costs $\mathcal{O}(mnp)$
- It also induces a substantial memory saving...
 forward

EXAMPLE Back-propagation computations 36

- Automatic-differentiation fits well Deep Learning!
- Note the lock that can make distributed optimization difficult Ref.:Decoupled Neural Interfaces using Synthetic Gradients, Jaderberg et al, 2017
- How is it implemented?

 $\partial loss$

 ∂x_{j+1}

$$\frac{\partial \text{loss}}{\partial w_i}$$
 Gradient w.r.t. parameters

CUDA, GPU

(GPUs were for video-games which require fast graphic rendering!)

- Deep learning algorithms rely a lot on **linear** operations. (ex: convolutions)
- CUDA routines permit to implement efficiently linear algebra routines: min. speed up of **100**.
- GPUs are now super mainstream...
- It's not unusual to have a 1TB GPU memory.

Training Pipeline

• Once the model $\Phi(x;\theta)$ and the loss ℓ is fixed the model is trained via mini-batch:

Ha

Cooking recipe

• Batch-normalization

The strength of DL

- Data? Computer power? **Not only**:
- Flexibility&modularity: quickly benchmarking nonlinearity, layer dimension, losses, batch size, learning rate schedule...
- Is it overfitting? Clearly, yet the representations learned are empirically excellent and used in many cryptic applications.

Introduction to high-dimensional tasks

Understanding Convolutional Neural Networks

Engineering Deep Neural Networks

Under the Hood of Neural Networks

$$C_f = \int_{\mathbb{R}^D} \|\omega\|_1 |\hat{f}(\omega)| d\omega$$

Convolutional layers in CNNs

Why convolutions?

$$(a \star b)(u) = \int a(u - v)b(v) dv$$

number of channels

Let a linear operator: $W: \ell^2(\{1, ..., n\}^k)^{d_1} \to \ell^2(\{1, ..., n\}^k)^{d_2}$

$$L_1: \ell^2(\{1,...,n\}_k^k)^{d_1} \to \ell^2(\{1,...,n\}_k^k)^{d_1} \text{ size of an image } L_2: \ell^2(\{1,...,n\}_k^k)^{d_2} \to \ell^2(\{1,...,n\}_k^k)^{d_2}$$

where
$$L_i x[u,j] = x[u+1,j]$$

• Lemma:

translation operator

$$WL_1 = L_2W \iff Wx[u,j] = \sum_i (k_{i,j} \star^u x)[u,i]$$

• Fourier analysis!!

$$\widehat{x \star y}(\omega) = \widehat{x}(\omega)\widehat{y}(\omega) \qquad ----$$

 ω

Regularity corresponds to a fast decay

A short analysis of an AlexNet

WIPMIA Model for the first layer

$$\psi_{C,D,\xi}(u) = Ce^{-u^T D u} e^{iu^T \xi}$$

Ref.: I Waldspurger's phd

• Consider Gabor filters and fit the model.

This principle is core in many models (V1, Scattering,...)

Wavelets

- ψ is a wavelet iff $\int \psi(u)du = 0$ and $\int |\psi|^2(u)du < \infty$
- Typically localised in space and frequency.
- Rotation, dilation of a wavelets:

$$\psi_{j,\theta} = \frac{1}{2^{2j}} \psi(\frac{x_{\theta}(u)}{2^j})$$

• Design wavelets selective to **rotation** variabilities.

$$\psi(u) = \frac{1}{2\pi\sigma} e^{-\frac{\|u\|^2}{2\sigma}} (e^{i\xi \cdot u} - \kappa)$$

The Gabor wavelet

(for sake of simplicity, formula are given in the isotropic case)

$$\phi(u) = \frac{1}{2\pi\sigma} e^{-\frac{\|u\|^2}{2\sigma}}$$

Wavelet Transform

$$||Wx||^2 = \sum_{\theta,j \le J} \int |x \star \psi_{j,\theta}|^2 + \int_{-\infty}^{\infty} x \star \phi_J^2$$

- Covariant with translation $WL_{\alpha}=L_{\alpha}W$
- Nearly commutes with diffeomorphisms $||[W, L_{\tau}]|| \leq C||\nabla \tau||$ Ref.: Group Invariant Scattering, Mallat S
- A good baseline to describe a signal (here, an image)!

 ω_1

EPMLA Zoom on the parametrisation.

• Very often, the filters of a CNN have a small support (3x3) and are interlaced with downsampling.

$$y[n, \lambda_{i+1}] = \sum_{i=1}^{n} x[., \lambda_i] \star k_{\lambda_{i+1}, \lambda_i}[2n]$$

Similar to a Wavelet Transform.

• Except the sum isn't separable.

Egnal Processing Tour, Mallat 1999
$$x_{3}$$

$$= \frac{1}{\sqrt{2}} \hat{h}(\frac{\cdot}{2}) \hat{\phi}_{j-1}$$

$$= -\hat{q}_{0}(\frac{\cdot}{2}) \hat{\phi}_{z}$$

From wavelet to Scattering

Has many invariance properties

 $h \ge 0$

Scattering as a CNN

Scattering coefficients are only at the output

Ref.: Deep Roto-Translation Scattering for Object Classification. EO and S Mallat Recursive Interferometric Representations, S Mallat

EPMLA A successful representation. in image classification

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

- The design of the scattering transform is guided by the invariance to Euclidean groups and deformations
- To which extent can we compete with other architectures on more complex problems (e.g. variabilities are more complex)? (still open!)

Invariant Representations and Deep Learning

$$L_{\tau}x(u) = x(u - \tau(u))$$

Averaging is the key to get invariants

High dimensionality issues

Group invariance

- The notion of convolution can be easily extended on a compact group or a Lie group G via a Haar measure.
- It is the only measure invariant by (left) translations, i.e., $L_*\mu = \mu$ which allows to introduce:

$$L^{2}(G,\mu) = \{f, \int_{G} |f|^{2} d\mu < \infty\}$$

• And thus the convolution operation:

$$a \star b(g) = \int_G a(\tilde{g})b(\tilde{g}^{-1}g)d\mu(g)$$

• and some Fourier analysis (on Lie groups):

$$\rho: G \to L^2(G) = \bigoplus_{\omega} E_{\omega}$$
 invariant subspace of the representation

EPMLA Covariance via convolution 57

- We say that L is covariant with W if WL = LWexample: convolutions!
- We say that A is invariant to L if AL = A
- If W (e.g., convolution), ρ (e.g., point-wise nonlinearity) are covariant and if A is invariant to L then $\Phi x = AW_{J}\rho W_{J-1}\rho W_{J-2}...W_{1}x$

is invariant. Indeed:

$$\Phi Lx = ALW_J \rho ... W_1 x = \Phi x$$

• It is also possible to have only an approximate covariance and one measure it via the norm of:

$$[W, L] = WL - LW$$

example: deformation ()

Symmetry group hypothesis

Ref.: Understanding deep convolutional networks

S Mallat

• To each classification problem corresponds a canonic and unique symmetry group G:

$$\forall x, \forall g \in G, \Phi x = \Phi g.x$$

High dimensional

• We hypothesise there exists **Lie** groups and CNNs such that:

$$G_0 \subset G_1 \subset ... \subset G_J \subset G$$

 $\forall g_j \in G_j, \phi_j(g_j.x) = \phi_j(x) \text{ where } x_j = \phi_j(x)$

• Examples are given by the euclidean group:

$$G_0 = \mathbb{R}^2, G_1 = G_0 \ltimes SL_2(\mathbb{R})$$

EXEMPLIA An example: the roto-

translation

- If the convolution is defined on G, G', one can extend it to $G \times G', G \times G'$.
- Roto-translation (or rigid motions) is a non commutative group:

$$(u,\theta).(\tilde{u},\tilde{\theta}) = (u + r_{\theta}\tilde{u},\theta + \tilde{\theta})$$

• ... and this leads to the following convolution:

$$(Y \circledast \Psi)(g) = \int_{g'} Y(g') \Psi(g'^{-1}g) dg$$

Progressive Invariances

- Interestingly, CNNs often incorporate some poolings \mathcal{P} which satisfy for $||I - \mathcal{L}|| \ll 1$: $\mathcal{PL} \approx \mathcal{P}$.
- It allows to progressively induce more invariance. (and it's very similar to a Wavelet Transform)
- Similarly, the non-linearity is point-wise. Interestingly, point-wise non-linearity are the only non-linearity ρ that commutes with deformations, ie

$$\rho L = L\rho$$
 iff $\forall x = (x_1, ..., x_d), \rho(x) = (\rho(x_1), ..., \rho(x_d))$

Ref.: Phd of Joan Bruna

LIPMLA How to address deformations? ...

• Weak differentiability property:

$$\sup_{L} \frac{\|\Phi Lx - \Phi x\|}{\|Lx - x\|} < \infty \Rightarrow \exists \text{ "weak" } \partial_x \Phi \\ \Rightarrow \Phi Lx \approx \Phi x + \partial_x \Phi L + o(\|L\|)$$
 A linear operator

• A linear projection (to kill L) build an invariant

- Deformations $L_{\tau}x(u) = x(u \tau(u))$
- Analytic wavelets permit to build stable invariants

to:

Ref.: Group Invariant Scattering, Mallat S

- small translations by a:

$$\widehat{L_a x \star \psi}(\omega) = e^{i\omega^T a} \hat{x}(\omega) \hat{\psi}(\omega)$$

The variability corresponds to a phase multiplication!

- small deformations:

$$||(L_{\tau}x) \star \psi - L_{\tau}(x \star \psi)|| \leq C\nabla ||\tau||_{\infty}$$

Introduction to high-dimensional tasks

Understanding Convolutional Neural Networks

Engineering Deep Neural Networks

Under the Hood of Neural Networks

$$C_f = \int_{\mathbb{R}^D} \|\omega\|_1 |\hat{f}(\omega)| d\omega$$

Classification mechanism

LIPMLAFighting the curse of dimensionality.

• Objective: building a representation Φx of x such that a simple (say euclidean) classifier \hat{y} can estimate the label y:

- Designing Φ : must be regular with respect to the class: $\|\Phi x \Phi x'\| \ll 1 \Rightarrow \hat{y}(x) = \hat{y}(x')$
- **Necessary** dimensionality reduction and separation to break the curse of dimensionality:

PMLA Model on the data: low

dimensional manifold hypothesis?

• Low dimensional manifold: dimension up to 6. Not higher:

Property: if
$$f: \mathbb{R}^D \to [0, 1]$$
 is 1-Lipschitz, then let $N_{\epsilon} = \arg\inf_{N} \sup_{i \leq N} (|f(x) - f(x_i)| < \epsilon)$.
Then $N_{\epsilon} = \mathcal{O}(\epsilon^{-D})$

• Can be true for MNIST...

• Yet high dimensional deformations are an issue in the general case!

Flattening the space:

progressive manifold?

• Parametrize variability on synthetic data: $L_{\theta}, \theta \in \mathbb{R}^d$ and observe it after PCA

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

• Data tends to live on flattened space. Tangent

space?

Difficult to find evidences of such phenomenon

ipmia Mechanism proposal:

Flattening the level sets

Ref.: Understanding Deep Convolutional Networks, Mallat, 2016

Linear invariant can be computed!

How to linearize? Ex.: Gâteaux differentiability

$$\exists C_x, \sup_{\mathcal{T}} \frac{\|\Phi x - \Phi \mathcal{T} x\|}{\|\mathcal{T}\|} < C_x \Rightarrow \exists \partial \Phi_x : \Phi \mathcal{T} x \approx \Phi x + \partial \Phi_x. \mathcal{T}$$

• However, exhibiting \mathcal{T} can be difficult. (curse of dimensionality)

Ex.: linear translations $\mathcal{T}_a(x)(u) \triangleq x(u+a)$, yet non linear case?

Empirical observation:

Progressive separability

• Typical CNN exhibits a progressive contraction & separation, w.r.t. the depth:

Ref.: Building a Regular Decision Boundary with Deep Networks, EO

• How can we explain it?

A mysterious black-box

Concept of neuron?

- Consider: $v \in \mathbb{R}^{1000}$, $x_v = \arg\max_{x \in \mathcal{D}} \langle \Phi x, v \rangle$ dataset
- Claim 1: v = (0, ..., 0, 1, 0, ..., 0) has a semantic meaning

Ref.: Intriguing properties of Deep Neural Networks, Szegedy et al.

• Claim 2: any unit norm v has a semantic meaning.

(a) Direction sensitive to white, spread flowers.

(b) Direction sensitive to white dogs.

(c) Direction sensitive to spread shapes.

(d) Direction sensitive to dogs with brown heads.

MIA Adversarial examples

- NNs are super sensitive to input noise
- Indeed, the NN is at most $||W_1||...||W_J||$ -Lipschitz

$$\inf_{\Phi(x) \neq \Phi(x+\epsilon)} \|\epsilon\|$$

Or even for every class, there are algorithms with parameters (ϵ, κ) s.t.:

Ref.: Universal adversarial perturbations, Moosavi et al.

Ref.: Lipschitz Regularity of deep neural networks, Scaman and Virmaux

Reconstruction from a given layer?

Ref.: Inverting Visual Representations with Convolutional Networks, Dodovistky et al.

(Information bottleneck)

• Reducing the information sounds relevant:

$$I(X;Y) = \int_{\mathbb{R}^2} p(x,y) \log rac{p(x,y)}{p(x)p(y)} \mathrm{d}x \mathrm{d}y = H(X) - H(X|Y)$$

Measures the dependancy between variables

$$I(X; \Phi_1 X) \ge I(X; \Phi_2 X) \ge \dots \ge I(X; \Phi_J X)$$
"Compress" X

$$I(X; Y) \ge I(\Phi_1 X; Y) \ge \dots \ge I(\Phi_J X; Y)$$
... but "reveal" Y

They propose to introduce:

$$\Phi_{j,\lambda} = \arg\inf_{\Phi} I(\Phi_{j-1}X, \Phi_j X) - \lambda I(\Phi_j X, Y)$$

• But one can easily build invertible CNNs...

EDITION IN INVERTIBLE ARCHITECTURES

Ref.: i-Revnet, depp invertible networks Jacobsen, Smeulder and EO

One study case: 1-hidden layer NNs

1-NN on the sphere

1-hidden layer neural networks are one of the simplest instance of Neural Networks. A real valued 1-NN writes:

$$\Phi(x) = \sum_{i \le n} \alpha_i \rho(\langle x, \theta_i \rangle) \quad \text{where} \quad x \in \mathcal{B}(0, 1), (\alpha_i, \theta_i) \in \mathbb{R} \times \mathbb{R}^d$$

• If
$$\rho$$
 is homogeneous, i.e. $\forall \lambda > 0, \forall x \in \mathbb{R}, \rho(\lambda x) = \lambda \rho(x)$, we get:
$$\Phi(x) = \sum_{i \leq n} \alpha_i \|\theta_i\| \rho(\langle x, \frac{\theta_i}{\|\theta_i\|} \rangle)$$
ReLU!

$$= \int_{\mathcal{S}^{d-1}} \rho(\langle x, \theta \rangle) \, d\mu_n(\theta) \quad \text{with} \quad \mu_n = \sum_{i \le n} \alpha_i \|\theta_i\| \, \delta_{\frac{\theta_i}{\|\theta_i\|}}$$

• Then let $|t| = \sqrt{1 - ||x||^2}$ and let:

$$\tilde{\Phi}((x,t)) \triangleq |t|\Phi(\frac{x}{t}) = \Phi(x) \text{ if } t > 0$$

• We thus have a function parametrised by a measure of the sphere and defined over the sphere $\mathcal{S}^{d-1}!$ Ref.: Breaking the curse of dimensionality with

convex neural networks, F Bach

Convolutions on $L^2(\mathcal{S}^{d-1})^{\frac{1}{12}}$

• Instead to consider finite measures $\mu \in \mathcal{M}(\mathcal{S}^{d-1})$, consider as a reference measure the uniform measure σ and:

$$L^{2}(\mathcal{S}^{d-1}) = \{ \int_{\mathcal{S}^{d-1}} |p|^{2} d\sigma < \infty \}$$

which is of the type: $d\mu = p d\sigma$ (no dirac!)

• And we study approximation of f regular enough of the type:

$$f(x) \approx \int_{\mathcal{S}^{d-1}} \rho(\langle x, \theta \rangle) p(\theta) \, d\sigma = \rho \circledast p(x)$$
 regularity to define well defined because ρ is bounded

1-NN Approximation

Fourier analysis-like can be done on S^{d-1} via spherical harmonics

心器器等等等器級の

的数类类等毒素类数的

Allows to derive approximation bounds of Lipschitz

functions with $\rho \circledast p$

supported μ such that for $x \in \mathcal{S}^{d-1}$: Ref.: Breaking the curse of dimensionality with convex neural networks, F Bach

$$|(\rho \circledast p)(x) - \int_{\mathcal{S}^{d-1}} \rho(\langle x, \theta \rangle) \, d\mu(\theta)| \le \epsilon ||p||$$
and $\#(\operatorname{Support}(\mu)) \le C(d)\epsilon^{-\frac{2d}{d+3}}$

1-NN Optimization

Lazy training: the idea that neural networks behaves like their linearised counter part due to rescaling effects in the asymptotic regime.

linearisation: $\Phi(\Theta) \approx \Phi(\Theta_0) + (\Theta - \Theta_0)^{\top} \nabla \Phi(\Theta_0)$

$$\Phi(x) = \gamma(n) \sum_{i \le n} \alpha_i \rho(\langle x, \theta_i \rangle)$$
 then $\gamma(n) = o(\frac{1}{\sqrt{n}}) \Rightarrow \text{laziness}$

Ref.: On Lazy Training in Differentiable Programming, Chizat et al.

Optimization of 1-NNs via optimal transport: many asymptotic results (global optimum!) if the non-linearity is

homogeneous.

 f^* has 5 neurons

Ref.: On the global convergence of gradient descent

for over-parameterized models using optimal transport, Chizat and Bach

Ref.: The Power of Depth for Feedforward Neural Networks, R Eldan and O Shamir

- Under non-restrictive assumptions (e.g., satisfied by ReLU) on ρ , there exists constant c, C > 0, such that for any dimension d, there exists a measure μ and $g : \mathbb{R}^d \to \mathbb{R}$ such that
- g is bounded, with support in $\mathcal{B}(0, C\sqrt{d})$ and can be approximate by a 3 layers NN with a polynomial width.

• BUT any 2 layers NN g such that $\int |f-g|^2 d\mu \le c$ has an exponential width.

More about my research

- Asynchronous Distributed Optimization (might have some funded positions soon)
- Interpretability in Deep Learning
- Interferometric Graph Transform (\approx Scattering for Graphs)
- Tabular data

Conclusion

- Deep learning is a super excited topic because of it solves many tasks...
- ... yet much has to be done to understand it much better.

• Resources:

https://edouardoyallon.github.io, papers, codes https://edouardoyallon.github.io/MAP670R-2020/ notes.pdf, more about 1-NNs and Deep Learning theory!

Thanks for your attention!