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@Min  Overview of the lectures

24/02/22 - Lecture 1: Symmetry, Invariance & Groups (3h30)

e 03/03/22 - Lecture 2: Scattering Transform & Non-Euclidean data. (2h30) + 1h lab

e 10/03/22 - Lecture 3: Approximation of Shallow NNs and Lazy training (2h30) + 1h lab
e 17/03/22 - Lecture 4: Generalisation properties of DNNs.

e 24/03/22 - Lecture 5: TBD

e 31/03/22 - Poster presentation of the Projects

Grade= 50%(1 homework+1 lab) + 50% project

Groups of 2: homework and projects have to done by groups of 2!

Projects: Pick a research article from a list or an academic paper of your choice (please
validate it with me)

Project grading procedure: via a poster (as in academic conferences), 5-10 min of
presentations + 5 min of questions. The quality of the poster will be graded.

A poster is about A1l format (and can simply be a collection of 6-8 A4 pages)

Homework is out and due in 2 weeks (March 10th), as well as project choices.




MLA
° (zeneric statements

e Announcements will be held on the website, and sometimes
by email.

e For each lecture, you'll find some reference papers, lecture

notes, slides.
e A google spreadsheet will be dedicated to the projects.

e No correction for the lab will be sent.



OMLA Signal Processing meets

Deep Learning

e Signal processing goal: analysing, generating or

altering t
from a se

he digitalisation of observations obtained
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e Deep Learning goal: solving signal processing

tasks wit

h neural networks.

Traditionally und

erstood through the lens of Machine Learning
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@MLA  Objective of the current
lecture

e Understanding the challenges in high-dimensional
classification

e Understanding the concepts of covariance,
invariance and linearisation

e Linking Machine Learning and Signal Processing

e Introducing the Scattering Transtorm
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@ Mia We will discuss widely the.
Scattering Transform.

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

e Successfully used in several applications:

e Digits ¥ H 4 4

All variabilities

are known

Small deformations
+Translation

555
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o Textures

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L and Mallat S.
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e We will see that the design of the scattering transform is guided by
the euclidean group.

e Goal of a Scattering Transform: removing undesirable (group)
variabilities



@ MLR

(zeneral comments about

Deep Learning




@ MLR

High-dimensional
classification



@ MLiA
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. o o .. . ®
® ° o \
o e o ° o . Which color should be this
’ ¢ °. : circle?

An example of supervised task: classification
Why is this picture bad?




@ Ml Supervised task o

X = R? Samples space

) = { 70} Labels

Input data > Output data
reX Plr)~yec)

e LEstimating a label y from a sample z, by training a
model & on a training set. Validation of the model
is done on a different test set.

e Examples: prediction, regression, classification,. . .

e Best setting: dimensions of z and y is small, X’ large
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@ wiaHigh dimensional images

e PdF's are difficult to estimate in high dimension.

- I
B

e For a fixed number of points and bin size, as N

increases, the bins are likely to be empty.

Curse of dimensionality:
occurs in many machine learning problems



@ MR Very high-dimensional
lmages

e Curse of dimensionality!

£ atp et
+ g AN
"l

#ws Fstimation problem

Training set to
predict labels

*

.13



@ wMia Large datasets...

e ImageNet 2012: (350GB)
I million training images, 1 000 classes Rt magecnetong

400 000 test 1mages
Large coloured images of various sizes

e Labels obtained via Amazon Turk (complex process
that requires human labelling)

14


http://image-net.org

@ wiaDifficult problems due to
Image variabilities

(Geometric variability Class variability

Groups acting on images:

. . . Intraclass variability
translation, rotation, scaling

- LR AN

Other sources : luminosity, occlusion,

Not informative

——rir
o

small deformations

— (JJ

High variance: hard to reduce!




@ Miia Desirable properties of a

representation
e Invariance to group G of transformation (e.g. roto-
translation):
Vr,Vg € G, P(g.x) = ®(x) A
_—®
e Stability to noise -
Vo, y, () — @)z < 2~y
e Reconstruction properties D)

y=®(z) <=1z =>0"(y)

e Linear separation of the different classes
Vi 7 J, || E(P(X5;)) — E(P(X;))][2 > 1
Vi,o(®(X;)) < 1 Can be difficult to handcraft..

.16
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@®MLA Typical Vision pipelines
(prlor 2010)
Not Learned E Mostly Learned
Image .
0 5 — Image —»> Descriptor Encoder —  Classifier
xtractor Descriptor
Dense sampled Low level A
patch extraction descriptor Spatial

: layout
’ IXT 2X2

........ — X3 5X1



@ wmia Is ImageNet solvable?

Years of
research. ..

THIS 1S YOUR MACHINE LEARNING SYSTEM?
V

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN (COLLECT
THE ANSLJERS ON THE OTHER SIDE.

l
WHAT IF THE ANSIERS ARE LJRONG? )

JUAST STIR THE PILE DNTIL
THEY START LOOKING RIGHT:

.18
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@ MLnA Of course”?

e Huge gap thanks to deep neural networks.
O Handcrafted ©O DeepNet

super-human

% accuracy

ImageNet:

------------------------------------------------------------------------------------------------------------------------------------------- 1 million training
AlexNet images, 1 000 classes
60 400 000 test images
2010 2011 2012 2013 2014 2015 2016 2017 Large coloured images

of various sizes

topo - ImageNet

Theory for good performances?



+ New chat

P ;QuéesWikipedia? 2 W

[P New chat

Confirm clear conversations
0- Light mode

OpenAl Discord

Updates & FAQ

Log out

¢Qué es Wikipedia?

Wikipedia es una enciclopedia en linea gratuita que se basa en el modelo de
colaboracién de voluntarios. Cualquier persona puede escribir y hacer ediciones en

Wikipedia, lo que permite que la enciclopedia tenga una gran cantidad de contenido

sobre una amplia variedad de temas. Wikipedia es una de las enciclopedias en linea
mas populares y es una de las primeras referencias que muchas personas buscan

cuando tienen preguntas sobre un tema especifico.

‘G Regenerate response

Spectacular results
(let’s not spend too much time here, everybody is
convinced by their supremacy.)



@ MiA A biased history of -
Deep Learning

Hinton scaling

LeCun designing Bengio starting
NN I N
C'NNs DL libraries CNNs to ImageNet AlphaGo
Neural winter Neural winter

1980 \ 1990 2000 2020
1it’s g0 slow" "kernels are Transformers
provably better" (text)

(GANs

(vision)



@ MLR

e We'll

.22

Multi Layer Perceptron E

 write a J-1-hidden layer neural network of

dept]

n J, with afline operators Wi, ..., Wj:

Or =WiopWi_1p.. Wiz

e Where, p: R — R 1s a non-linear function that we

extend to a point-wise non-linear operator via:

p(x)]i = plzi)

e An additional parameter is the maximal width " K"

of each layer.



@ wMia Convolutional Neural *#
Networks

input signal

L —>

WikF—

2

R . ‘

Engineering

Each layer:

Tjr1 = pWjz;

pooling

ﬁ [ ) [ ] °

—

0

—»

111111
pooling

that leads to: ij—l—l(up >‘j+1) — P(

where:

p(x)

= max(0, )

S.t.

output signal

— O(x)



@miaFrom AlexNet to VGG to
ResNet

Input data Convl Conv2 Conv3 Conv4 Conv§ FC6 FC7 FC8

""" 13x 13 x 384 13x 13 x 384 13X 13 X 256
/ 27X 27 X 256

55% 55 X 96 . .
i | ] 1000 From 7x7 convolutions
227%x 227 X 3 4096 4096
v to 3x3 convolutions.
+ Less down-sampling
Y Y /a /a VR ‘) N\ VY ( \ ( \ ( \ [ \
<| < ® @ e gl g SRR ISR
(o] (o] ~ ~ N N (V] Te] n o To] 0 o - “ o
> > < | = > Q|3 > N > > > |3 > > |2 o2 o2
Els ElS>» E > E S+ E 5|5l E> S5 S+ S| ElE > S 3PS
(&) O [ (@] (&) [N (8] (8] (&) [ (&) (&) (8] [N (&) (&) (8] [ (&) O (6]
1) 1) ) 1) ) 1) ) ) ) ) ) ) ) = = =
X X X X X X X X X X X X X
o o (e0] o (e0] o o o (e0] (¢p] o o (e0]
—__/ —_/ —_/ N J N J N J N J & J & J N J N J . J
F\lh s Ne) e o] <
(] T~ 1 (] ™~ N

Kernel size 3x3 <7 3x3>3x3>3x3
For an 11mage Receptive field

of size N

+ params 9 49 27
Complexity 9N 49N 27N




@ MuA From VGG to ResNet

Bottlenecks as a cheap way to increase
dimension >> only helpful for Deeper CNNs

34-layer 50-layer
Tx7, 64, stride 2 plain ResNet
3% 3 max pool, strid 18 layers 27.94 27.88
BER 1 ] 341 28.54 25.03
3%3. 64 % ‘l, 64 ayers
143, 64 %3 3x3,.64 | X3
o | 1x1,256 |
- [ 1x1, 128 ]
B ] 3x3, 128 | x4 |
| 33,128 51 512 v
_ - 3 1x%1.256 5 i 1X1X(4K)XK
3x3,25 T
o O 1x6 || 3x3.25 |x6 BXSX(4K)X(4K)‘ v
3x3, 256 |
- - | Ix1, 1024 | * ngxKxK
s | s Bx3x(4K)x(4K)| | V© !
3x3,512 |77 || DTSN 1x1xKx(4K)
- - | 1x1,2048 v
average pool, 1000-d fc, |
Complexity 200K "2 17K "2
#params 290K ™2 17K"2

Take home message: tricks to maximise the utility of a GPU to train
bigger CNNSs.

.25



@ MLR

Today study:

.26
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@ Min We will discuss widely the’
Scattering Transform (2).

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

e Successfully used in several applications: All variabilities

¥ M < Y < are known
Small deformations
+Translation

e [extures /Rotat10n+Scale
X d Al Y Gy
; : !

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L and Mallat S. \

j
y :
\ LN - -
’ P
JSowa.y 3 , ——
g 3 v~
i i S S >

e The design of the scattering transform is guided by the euclidean

group

e To which extent can we compete with other architectures on more
complex problems (e.g. variabilities are more complex)?



@ MLR

Symmetries, linearisation

28



@ Miin Empirical observation: -

Progressive separability

e Typical CNN exhibits a progressive contraction &
separation, w.r.t. the depth:

[ [ ] IOW
1 ® °
o o ©® > o o sz . ,0W13 > ....
RD ° e °
o SVM NN In the following, representations are spatially averaged.
100 : : : : :
Best performange |
20 I Nearest Neighbor (NN)
- ° Gaussian SVM
= » o
8 o. ° ®
<X o ® o . ® o ° '
o ® < ¢

30

1 2345678 9101112
Depth

e How can we explain it?

Localised classifiers

Ref.: Building a Regular Decision Boundary with Deep Networks, EO
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OMUR Symmetries

e Considerf : X - R
We say that £: X — X is a symmetry of fif it is

—— class 1

lnvertlble and —— class 2

f(Lx) = f(x) (\/\/
e We can consider the group of symmetries: @

G = {L invertible, f(Lx) = f(z)}

e Without any constraints on G, the action is

transitive and thus fis completely characterised by

Gz, as:
fH(f(x) = {La, L € G}

As for any {u,v}, one can get: Lx =< v, ifx=u

( .
u, ifx=wv

|z, otherwise



@min  Examples of symmetries

N vyt 9% p

N YolsTt t N r /e
S R TR )
-~ . \-. \l ’. ,f J’ / 7

\ ] 4 4
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G N ) S

e In physics: r9FE(u) = E(r_ou)
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A . v A 3 SR Ll
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. ol S i/ NN N
via u) = 22 NN
FRRT B ; s LS
TENIIU — U v
0 0 o
/ 7/ /2 j

e

e In machine learning: L,z(u) = z(u — a)

e With ODEs:
e pen ;1 wlum
a s |4~ —— P
Lt ?/ (U) — y (u — t) ,_...-::.'.'::_-.;:E{;'_-;_:E;{2.}_‘{5;-;.;_..._‘:'_;;_-::'_-_::.,\
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"
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@ MLA Linearization: i

Lipschitz gives differentiability

e Weak differentiability property, via Rademacher theorem:

Olxr — P
sup | LCE d < 00 = 4 "weak” 0,
r | Lz— =z = OLxr ~ Px +|3a:(I)L|‘|‘ o(||L]|)

A linear operator

Displacement [,

e A linear projection (to kill L) build an invariant

o o

> o
+ projection o




@ wM™ia Flattening the level sets
(= classification symmetries)

— class 1

— class 2 Amenable for any supervised task!

Ref.: Understanding Deep Convolutional Linear invariant can be Computed!
Networks, Mallat, 2016

e How to linearize? Ex.: Gateaux differentiability

| Pz — DT x|
34C, sup
T |T]]

e However, exhibiting 7 can be difficult. (curse of dimensionality)

<Cp = 300,: Tz~ dx+ 0P,.T

Ex.: linear translations 7, (ZIZ‘) (u) = x(u -+ CL) , yet non linear case?



@ wMia Flattening the space:

progressive manifold?
o Parametrize variability on synthetic data: Ly, 0 € R?

and observe it after PCA

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

a
1 C T -
o £ EE } e
1| ~
- L =
iy =Sy a B —
M - . -
- — = h " = -i .H ;J 4 -. -
B = E - =] S —mE u- " - - L=
i . .!i;.-‘ -’ 4; -‘ .
- ENCh e BT - A
(c) Object color (d) Background color (a) Lighting (b) Scale

e Data tends to live on flattened space. Tangent space?’

pai \
aly \Mad d
Germany Rom
man walked Berlin
[ . Turkey \
R ‘ Ankara
O el a woman
‘v swam )
king T ® ©) ® Russla ——————— __  Moscow
’ *. walking - Canad Ottawa
queen \) Japan Tokyo
‘/-\-> / O Vietnam Hanoi
swimming China Beijing
Male-Female Verb tense Country-Capital

Difficult to find evidences of such phenomenon more formally



@ MLR

Mathematical
Toolbox

.35



@ MLR

Reminders about
Hilbert Space

We will always work in a Hilbert Space. ..

.36



@ MLR

.37

Hilbert space

e (H,(,.) isa (real or complex) Hilbert space, if it

is complete, for the norm:

|zl = V{z, 2)

e A linear operator T'is bounded, if:

||| < [T

]

Its adjoint is defined via: V$, Y € 7‘[, <T£l?, y> — <fl3, T*y>

o If TT' =T'T=1 and T is bounded, then T’ 1is
bounded. We write: U(H) ={T,TT* =T"T =1}

e The spectrum of T'is defined as:
Sp(T) = {\,T — AI has no inverse.}
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: .3
@ MLA Compact operator: spectral theorem™.
e Tis compact if TB(0,1) is compact (note that it is
automatically bounded). In this case, its spectrum is

countable and:

1

(i) H = 69 ker(T — A\,I)

neN

(ii)) VA #£ 0, dimker(T — A\I) < o

(i) {A\n} C {An} U {0}

e A simple characterisation: T is compact if and only
if it is the limit of compact operators. In particular,

if dim (TH) < oo, then T is compact.



@ MLR

Reminders about

integration

Fourier

"ools super useful to this class (sometimes tricky)
and the notion of Integral Operators.

.39



OMLA Integral Operator -

e An example of operator is given on L*(X) with Integral
Operators:

K f(u) = / k(u,t) f(t) dt

t

e This is indeed an operator of L*(X) if for example:

3C > 0,/ \k(u,t)|2dt <C
t,u

e Here, the adjoint is given by: / f(u

e The kernel of K*K is given by w(u, / u)k(z,t) dz

and: || K f||2 :/|Kf(u)\2du:/f(u)(K*Kf)(u) du



@ Mlin
Schur Test

e Estimating the norm of a kernel will be crucial in
the following. ..

e We have the Schur test:

Let: K f () = / k(u, v)f (v) do

(Y

If /|k(u,v)|du§C’1 and /|k(u,v)|dv§02

then: HKH < \/0102

T4l



i ° ° 42
D MLA Convolutions in R
e Here, ¥ — R4 and remind that:
frg(x) = N flz—y)g(y) du(y)
1 1 1 p(md q(md
e (Young’s inequality) If: - + 1= ’ | . f e LP(R?),g € LYRY)

then:
1f*gllr < | fllnllgllq

e Setting of interest in this class: J € LZ, g fast decay, then

If L,x= r(u—a) and W = z xqp then 2 W =WL,



@®Mia Reminder about Fourier “*
F: L*(RY) — L*(R%)
Fr(w) = 2(w) = / e_wT“a}(u) du
Rd
[sometry: || Fzx|l2 = ||z]2

Hermitian symmetry: freal implies that f * (a;‘) — f(—x)

T *y(u) = /Rd r(u —t)y(t)dt

v x () — e Hw)()
d F -
%aj(u) .y IwT (W)

To(u) = z(u — a) e T(w)




@Mliﬂ Discrete image to continuous imagéu‘%

e An image x corresponds to the discretisation of a physical
anagogic signal (light!) and is thus continuous by nature.

Say we want to estimate f with:

o f(w)]
f(t) = nzz_oo f(n)ot—n —Iﬂ/\/\ ?»W
fa

Only valid if SuppOft(f) C [—W, 7T] m /T/T\T
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@MUA  Why is Fourier analysis
useful?

Lof — f(@)] = [f@)(e® * = 1)| < |f(w)sinwTa| < |f(w)wTql

100

> 200

300

400

500
100 200 300 400 500

(b)



@ MLR

Convolutions!

.46



O MR Convolutional Kernel

e For illustration purpose, consider

Kfw= [ @) =v)do=(f <)
e Then,

Re where: ) (u) = 1h(—u)
K*Kf=1x*f and m(w) = [¢)(w)|?

leads to:

IKfI2= [ [f(w)]d(w)|?do = (f, K*K[)

Rd

AT



Pmun Convolutional Frame "

e Consider Wz = {x x ¢, }, with no]meV[/xH2 — Z ||$*¢n||2

e We say that W is a convolutional frame if:

Allz]* < >l x¢pnl® < Bz
n
or

A< |pw)P<B

e Furthermore, the frame is tight it A = B.



Mlia Covariance via convolution™’

e We say that L is covariant with Wit WL = LW
e We say that A is invariant to L if AL = A

e If W (e.g., convolution), p (e.g., point-wise non-
linearity) are covariant and if A is invariant to L then
by = AWJ,OWJ_l,OWJ_Q...W1$
is invariant. Indeed:
OLxr =ALW;ip. Wiz = x
e It is also possible to have only an approximate

covariance and one measure it via the norm of:

W,L| = WL — LW
example: deformation (ﬂ T)



@ MLR

Group theory for analysing
convolutions

How can we design and characterise convolutions along a group?

.50



MLin ® [
@ Fourier on a circle,

decomposing a translation

@
How can extend Fourier beyond R%? XX

o
SXE X
e F X Kew
SR NN A
e Derivation is the infinitesimal generator of translation. ..

La(ei.t)(w) _ 6i(w—|—a)t _ eiwteiat

/ Span(ei't) 1s stable by translation. ..

T_on(w) = d(w)e™|= g(zw)n@(w)
r(u+a) = Z Z—Tx(m (w)

5l



@ Mlin
Groups

e We remind that a group is a set G equipped with .

—1 1

and a neutral element e s.t. Vo, 3z7 ' ixx”t =17

e Examples are given by: R®* F,, SO4(R), SU4(C), ...

e We’ll assume all our groups are equipped with an
invariant distance (not restrictive for compact

groups) Vg, d(g.9',g.9") = d(g', g")

e In practice, we’ll discuss only: R% [0, 27"
product /semi product of those

L — €

.52



@ MLiA
Haar Inieasure o1l a group

e If (7is locally compact, there exists a non-0 measure
unique (up to multiplication) measure

V9EG, u(A) = pu(g.A)
where a.2(g) = Lo2(g) = z(a™'.g)
e For compact/abelian groups, the measure is unimodular:

Vg € G, pu(g.A) = p(A.g)

—1

e We write:

I2(G) = {f measurable, / F(9))? dpd
G

53



@ MLA
Convolution along a group

e Again, introduce:

(a%b)(g) 2 /G a(§)b(5 1 g)

e (Young’s inequality) . .

1
For a € LP(G),be LY(G),—+1=—+ —, we get:
r P 9

lax bl < {la]p|0llq

e axb=>0xa if and only if G is commutative.

Can we recover a notion of Fourier? Invariance”?

.54



S MLA Unit approximation

o Convolution in R? has no neutral elements.

 Yet, there exists a sequence (§,,),,d. > 0,supp(d,) — 0
Hén*f_f‘l — 0 and Hén*f—fﬂ — 0

55



@ Mlin ,
Covariant operators

e Let W: LYR%) — L*(R%) be a bounded operator, s.t.:
1) WL, =L, W,Va

— Wx=zxxf
i)3f € LY(G), W6, — f

with f - Ll(Rd)

56



i .
@MLUA  Tpvariant operators
e Let A: L'(G) — R be a bounded operator, then:

AL, = A, Va < d)\ Ax = )\/ z(g) du(g)
G

BT



@MLA Unitary representations of groups®

e We say that p: G — U(H) is a representation if it
is a continuous morphism. Note that potentially,

here: dim H = o

e This will be our main tool to analyse convolutions,

via: 0: G — ULA(G))
g — (f — Lgf)

o And thus, if Wis covariant with translations WL, = L, W
then the characteristic subspace are stabilised.

e What can we say about those invariant subspaces?
Favorable case: matrix are diagonal.



@mia Invariant and irreducible
subspaces

e Def.: ' ¢ H is an invariant subspace of a representation p

if 1t 1s closed and:
Vg, p(g)F C F

e F'is invariant if and only if £~ is invariant.

e Def.: pis irreducible on A if its only invariant subspaces
are H and {0}. We also say that % is irreducible.

o Ideally, we would like to write H as 69 Hy s.t. p(9) 1,
is irreducible. neN
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@Min Compact abelian group

e Let’s give a couple of examples in the compact abelian
case.

e Example 1: RY with Fy : RY — RVand Lxn] = x[n + 1]

N
and  Fnz|k] = Z x[n]e #mF N
n=0

H,, = span{k — 62’”]{%}

e Example 2: L*([0,1]), with F : L*([0,1]) — ¢*(Z)
and L.z(u) = z(u — a)
1 " -
and  Fxn] = / z(u)e =" duy
0

C2r

H,, = span{u — 62””“}



@min Commutative groups,
compact, finite dimension

e Let p: G — U(H) be a group action.
e Theorem (Peter-Weyl): Assume G is compact. Then,

H = @Hn with  dim H,, < 0o

neN

where each subspace Hris an invariant subspace of p, ie:

Vg, p(g)Hn C Hny

e Theorem: If (; is also abelian, then dim H,, =1

TLDR: Compact abelian groups behave like [O, 2T ]d




@ MLR

Invariant Representations
with the Scattering Transform

.62



@ MLR

Models for natural signals

.63



@ Mia We will discuss widely the”
Scattering Transform.

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

e Successfully used in several applications: All variabilities
¥ M < Y < are known

Small deformations
+Translation

e Textures tion-+Scale

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L and Mallat S.

e The design of the scattering transform is guided by the euclidean
group.

e A scattering transform is a combination of complex-valued wavelets
and modulus non-linearity.



@ MLIA Model on the data: low Y
dimensional manifold hypothesis?
e Low dimensional manifold: dimension up to 6. Not higher:

Property: if f: R” — [0, 1] is 1-Lipschitz, then let
N = arginf y sup,;< (|f(z) — f(z:)| <e).

Then N, = O(e™P) A/\\

e Can be true for MNIST. .. T

All variabilities

are known

N VT X

H 4 ¢ 4 4 ¥ ¥
FEES S5 K
/ i i S S B A N |

g AN L

L..\
p
\.’
7 '\Small "limited" deformations
g

+Translation

35584 BES

e Yet high dimensional deformations are an issue in the

general C?Se! i (ﬂ ) | T o—




@ wmiaModel for the first layer

Ref.: T Waldspurger’s phd

wuswnzl -
SN, waSg - .-
INGIIS 32

e Consider Gabor filters and fit the model.

15 filters

This principle is core

19 filters

in many models
(V1, Scattering,... )
14 filters




@ wMiModel for the second layer

Ref.: I Waldspurger’s phd

First layer:

a(u)

Recombines along )

Why was this possible?
We were aware of the topology
of the previous layer!

Take the Voronoi diagram associated to
central frequency \ and color according to ¢*(\) | | 0
~ Visualisation of ¢
/@\

Y. by reindexing along frequency topolo
o b,&" (by g along frequency topology)

W

in the frequency plane




(for sake of simplicity, formula
are given in the isotropic case)

The Gabor wavelet

.68



Haar Wavelets
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Another example

unfolded Toeplitz matrix)
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@ MUA Wavelets on the real line

ey € L1(R) is a wavelet iff/w(u)du = (0 and /|¢\2(u)du < 00

e Typically localised in time and frequency, via
Heisenberg principle
. F
y .
() = —ah( — . (w) =Y (2w
0i(0) = o9 (o) 05(w) = P(2w)

P(w)

Wavelet transtorm



@ Mlin
2D-Wavelets

e ¥ isa wavelet iﬂ‘/w(u)du = 0 and /|¢|2(u)du < 00

e Typically localised in space and frequency.

Group action!

e Rotation, dilation of a wavelets: b W'
1 To (u)

e Design wavelets selective to rotation variabilities.

N | w | Non-Isotropic

» s -

Isotropic



@ wmia 2D-Wavelet Transform 7

o Wavelet transform: Wx = {zx ¢, 9,z x d5}0 i<
A2

e Isometric and linear operator of [,2 with ‘ ‘

Wz||* = Z /|x*wj792—|—/x*gb3 - all® »

e Covariant with translation L, : A .
WL, =L,W » -

o |lv x|y is small. (sparsity)

Ref.: Group Invariant Scattering, Mallat S



@MLIA  Admissible wavelets

e A family of wavelets {¥r}reas and low-pass filter @7 is
e—admissible if:

(L=o)llz)> < Y llaxall? + [l ¢s)1? < |||
AEA
or

(1—€) <) [P (w) + o (w) <1

AEA
e In practice, one adapts ¢; and we use:

A={(j,0) € Z x SO4(R),j < J}

T3



S min Wavelet Transform

implementation as a CNN

Implementation of a Fast Wavelet Transtform algorithm

—| gln] _’@_’LeveIS
e BN : coefficients
N L[ hn] Level 2‘
—>@— _’@_> coefficients g’h are SXS ﬁlteI'S
x[n]——>| hn] _’@_’ I;zz?ﬁéclierxts

VGG implementation:
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