Stability to diffeomorphisms and translations.

Edouard Oyallon

 $\underline{edouard.oyallon@cnrs.fr}$

CNRS, ISIR

Reminders and complements

Wavelet Transform

$$\psi, \phi$$
 regular with $\int_{\mathbb{R}^2} \psi(u) du = 0$

A Wavelet Transform is given by:

$$Wx = \{x \star \psi_{j,\theta}, x \star \phi_J\}_{\theta, j \le J}$$

where

$$\psi_{j,\theta} = \frac{1}{2^{2j}} \psi(\frac{-r_{\theta}(u)}{2^j})$$

$$\phi_J(u) = \frac{1}{2^{2j}}\phi(\frac{u}{2^J})$$

such that:

$$(1 - \epsilon) ||x||^2 \le ||Wx||^2 \le ||x||^2$$

$$1 - \epsilon \le \sum_{i, 0} |\hat{\psi}_{j, \theta}(\omega)|^2 + |\hat{\phi}_J(\omega)|^2 \le 1$$

$$1 - \epsilon \le \sum |\hat{\psi}(2^{j}(r_{-\theta}\omega))|^{2} + |\hat{\phi}(2^{J}\omega)|^{2} \le 1$$

basis for sparsifying a signal +observed in DNNs

MLA We will discuss widely the Scattering Transform.

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

• Successfully used in several applications:

• Digits

4444444444 5555555 777777777 88888888 All variabilities are known

Small deformations +Translation

Rotation+Scale

• Textures

Ref.: Rotation, Scaling and Deformation Invariant Scattering for texture discrimination, Sifre L and Mallat S.

- The design of the scattering transform is guided by the euclidean group.
- A scattering transform is a combination of complex-valued wavelets and modulus non-linearity.

Motivation to introduce the Scattering Transform

- Compared to a Deep Neural Network, the Scattering Transform is well-understood mathematically when <u>all</u> <u>variabilities are deduced from symmetries</u>.
- <u>Involves no-learning</u>: allows to obtain guarantees on the filters.
- State-of-the-art on simple benchmarks... what about complex ones?
- Let us discuss some benchmarks.

Two surprising architectures (1)

BagNet (2019):

Ref.: APPROXIMATING CNNS WITH BAG-OF-LOCALFEATURES MODELS WORKS SURPRISINGLY WELL ON IMAGENET

Two surprising architectures (2)

Patches (2021)

Scattering Classification Pipeline

• A global representation (2013):

• A local representation (2017): trained end-to-end

LipmiaImageNet Top5-Accuracy

Stability to groups of symmetries

Group Invariance?

3 methods to get invariance w.r.t. translations

- Linear averaging
- Non-linear Fourier modulus
- Wavelets

High dimensionality issues

MLA An example: translation

• Translation is a linear action:

$$\forall u \in \mathbb{R}^2, L_a x(u) = x(u-a)$$

• In many cases, one wish to be invariant globally to translation, a simple way is to perform an averaging:

$$Ax = \int L_a x da = \int x(u) du$$

• Even if it can be localized, the averaging keeps the low frequency structures: the invariance brings a loss of information!

îlede**France**

Another example Fourier moduli

• Consider: $x \to |\mathcal{F}x|$

• This is clearly invariant to translations but...

 ${\mathcal X}$

$$\mathcal{F}^{-1}|\mathcal{F}x|$$

Modulus reconstruction

$$\mathcal{F}^{-1}\left(\frac{\mathcal{F}x}{|\mathcal{F}x|}\right)$$
Phase
reconstruction

An example of non trivial-invariants on non-trivial groups: the roto-translation

• Roto-translation $SL(E)=\mathbb{R}^2\ltimes SO_2(\mathbb{R})$ is a non commutative group:

$$(u,\theta).(v,\varphi) = (u+r_{\theta}v,\theta+\varphi)$$

$$g.g' = \mathcal{L}_u r_\theta \mathcal{L}_v r_{-\theta} r_\theta r_\varphi = (u + r_\theta v, \theta + \varphi)$$

• We can define convolutions, Fourier, along this group!

Fourier modulus of the same images...

here:

$$|\hat{a}(\omega) + \hat{b}(\omega)| = |\hat{a}(\omega)| + |\hat{b}(\omega)|$$

$$\tilde{a} = L_u(a) \Rightarrow |\hat{\tilde{a}}| = |\hat{a}|$$

MLIA Invariances via analytic

wavelets

Analytic wavelets permit to build stable invariants Ref.: Group Invariant Scattering, Mallat S to small translations by a:

$$\widehat{L_a(x \star \psi)} =$$

Link with the AlexNet?

Demodulation:

$$\int_{0}^{T} |x \star \psi_{\lambda}(u)| \, du \approx \int_{0}^{T} \text{ReLU}(x \star \mathcal{R}(\psi_{\lambda})(u)) \, du$$
up to constants

Stability to deformations?

Diffeomorphism

- Let $E, F \subset \mathbb{R}^d, \phi : E \to F, E, F$ open. ϕ is a diffeomorphism if:
 - $-\phi$ is bijective
 - both ϕ, ϕ^{-1} are differentiable.

It is said C^k if ϕ, ϕ^{-1} are C^k . Smooth if ϕ, ϕ^{-1} are C^k for any k.

- Theorem (Local inversion): Let $\phi : \Omega \to \mathbb{R}^d$ a \mathcal{C}^k function with $\Omega \subset \mathbb{R}^d$ open.
 - If $\det(\partial \phi(x)) \neq 0$ then there is \mathcal{U}, \mathcal{V} open sets with $x \in \mathcal{U}$ such that $\phi : \mathcal{U} \to \mathcal{V}$ is a \mathcal{C}^k -diffeomorphism.
- Theorem (Global inversion): Let $\phi : \mathbb{R}^d \to \mathbb{R}^d$ a \mathcal{C}^k function, then ϕ is a \mathcal{C}^k -diffeomorphism with $\phi(\mathbb{R}^d) = \mathbb{R}^d$ if and only if for any x: $\det(\partial \phi(x)) \neq 0$ and $\lim_{\|x\| \to \infty} \|\phi(x)\| = \infty$

.21

Deformations:

• Consider: $\tau \in C^{\infty}$ and define:

$$\|\tau\|_{\infty} = \sup_{u} \|\tau\| \text{ and } \|\nabla\tau\|_{\infty} = \sup_{u} \|\nabla\tau\|$$

If
$$\|\nabla \tau\|_{\infty} < 1$$
 then: $\mathbf{I} - \tau \in \mathrm{Diff}^{\infty}$

In this case, we can introduce:

$$L_{\tau}x(u) \triangleq x(u - \tau(u))$$

Small deformations are locally group which is quite high-dimensional. And, you don't want to be fully invariant to diffeomorphisms!

Stability to group of symmetries

- Two groups are of interest: **diffeomorphisms** and **translations**.
- Stability means thus here:

$$\|\Phi(x) - \Phi(L_{\tau}x)\| \le C\|x\|d(\mathbf{I} - \tau, \mathbf{I})$$

• Lemma: If $\|\nabla \tau\| < \frac{1}{2}$ then $\mathbf{I} - \tau$ is a diffeomorphism and: $\|L_{\tau}\| \leq 2^d$

$$|1 - \det(\mathbf{I} - \nabla \tau(u))| \le d||\nabla \tau||_{\infty}$$
$$2^{-d} \le |\det(\mathbf{I} - \nabla \tau)(u)| \le 2^{d}$$

A motivating example

Translation invariance and stability to deformations? Why not:

$$\Phi x(\omega) = |\hat{x}(\omega)|$$

Again, doesn't work!

Consider: $\tau(u) = su, 1 > s > 0$

Let
$$x(u) = e^{i\omega_0 u} \hat{g}(u)$$
 thus: $\Phi L_{\tau} x(\omega) = \frac{1}{1-s} g(\frac{\omega - \omega_0}{1-s})$

Proof: Construct (x_n, τ_n)

s.t.
$$||x_n|| = 1$$

$$\|\nabla \tau_n\| \to 0$$

 ω but:

$$\|\Phi L_{\tau_n} x_n - \Phi x_n\| \ge 1$$

Remark on the non-linearity.25

Theorem (Bruna): Let $M: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ s.t. M is a non expansive operator, $||M(x) - M(y)|| \le ||x - y||$ and assume that $L_{\tau}M = ML_{\tau}$, meaning that M commutes with the action of diffeormophisms. Then:

Ref.: PhD Joan Bruna + Your homework!!!

$$\exists \rho : \mathbb{R} \to \mathbb{C} : \forall u \in \mathbb{R}^d, Mx(u) = \rho(x(u))$$

The Scattering Transform

Definition of the

Scattering Transform

<u>Define</u> a path of length n as $(\lambda_1, ..., \lambda_n)$ where $\lambda = (\theta, 2^{-j}), |\lambda| = 2^{-j}$ ω_2

Let us fix mother wavelet ψ and low-pass filter ϕ , smooth, with fast decay.

<u>Definition</u>: The Scattering path of $S_J|\lambda_1,...,\lambda_n|x$ is given by:

$$S_J[\lambda_1, ..., \lambda_n]x \triangleq ||...|x \star \psi_{\lambda_1}| \star ...| \star \psi_{\lambda_n}| \star \phi_J$$

<u>Definition</u>: Scattering Transform of order n:

$$S_J^n x \triangleq \{S_J[\lambda_1, ..., \lambda_k] x\}_{\lambda_1, ..., \lambda_k, k \le n}$$

Its norm si given by:
$$||S_J^n x||^2 = \sum_{\lambda_1, \dots, \lambda_k, k \le n} ||S_J[\lambda_1, \dots, \lambda_k] x||^2$$

We will also write the Scattering Transform as: $S_J x \triangleq \{S_J^n x\}_{n>0}$

$$S_J x \triangleq \{S_J^n x\}_{n \ge 0}$$

Much The Scattering Transform

• Main principle: cascade wavelets AND modulus non-linearity. Depth: "order" (in practice order 2); J: "Scale"

$$S_J x = \{x \star \phi_J,$$

Scattering as a CNN

O Modulus

 $h \ge 0$

Scattering as a CNN

Scattering coefficients are only at the output

Ref.: Deep Roto-Translation Scattering for Object Classification. EO and S Mallat Recursive Interferometric Representations, S Mallat

Properties of the Scattering.

Transform:

- A non-linear representation which depends on an invariance parameter J and n wavelet transforms.
- As it cascades unitary operators, Scattering is stable:

$$||S_J^n x - S_J^n y|| \le ||x - y||$$

• Thanks to wavelets, it linearizes small deformations:

$$||S_J^n x - S_J^n L_{\tau} x|| \le C_n ||\nabla \tau|| ||x||$$

• Thanks to low-pass filter, it is invariant to local translation:

$$||a|| \ll 2^J \Rightarrow S_J^n L_a x \approx S_J^n x$$

Non-expansivity?

- NNs are super sensitive to input noise
- Indeed, the NN is at most $||W_1||...||W_J||$ -Lipschitz

$$\inf_{\Phi(x) \neq \Phi(x+\epsilon)} \|\epsilon\|$$

Or even for every class, there are algorithms with parameters (ϵ, κ) s.t.:

Ref.: Universal adversarial perturbations, Moosavi et al. Ref.: Lipschitz Regularity of deep neural networks, Scaman and Virmaux

Feature map

 ${\mathcal X}$

Several features map

1st order coefficients

Example of Scattering coefficients

Scaling scattering on GPUs.

Scattering Transform Theory

Definition & nonexpansivity

Scattering Transform

defined via Integral Operators

Coefficients of the scattering transform are given by:

Non-expansivity of Scattering Transform

• Proposition: Given $x \in L^2(\mathbb{R}^d), y \in L^2(\mathbb{R}^d)$ we have, if $||W_J|| \le 1$:

$$||S_J x - S_J y|| \le ||x - y||$$

Proof:

<u>Lemma</u>: for $x, y \in L^2(\mathbb{R}^d)$:

$$|||x| - |y||| \le ||x - y||$$

Remark: implies boundedness

37

Stability to deformations

Main theorem statement

Recall that: $W_J x = \{x \star \psi_{j,\theta}, x \star \phi_J\}_{\theta,j \leq J}$

• Theorem (Adapted from Mallat, 2012): If ϕ , ψ are regular enough, $||W_J|| \le 1$ and if $\int_u \psi(u) du = 0$, there exists C such that for any J, if $||\nabla \tau||_{\infty} \le \frac{1}{2}$, then:

$$||S_J^n L_{\tau} x - S_J^n x|| \le n^{3/2} C ||x|| (||\nabla \tau||_{\infty} + ||\Delta \tau||_{\infty} + \frac{||\tau||_{\infty}}{2^J})$$

In other words, the Scattering Transform is stable to small deformations. Typical applications: n=2, J=3

Sketch of the proof.

Write: [A, B] = AB - BA which measures how A, B commute.

• First, we note that:

$$||S_J^n x - S_J^n L_{\tau} x||^2 = \sum ||A_J U_n x - A_J U_n L_{\tau} x||^2$$

• Next, we will bound each Scattering "paths"

$$||A_J U_n x - A_J U_n L_\tau x|| \le (c_1 ||A_J L_\tau - A_J|| + nc_2 ||[L_\tau, V_j]||) ||x||$$

• Finally, we will bound each operators:

$$||A_J L_\tau - A_J|| \le C_1 (2^{-J} ||\tau||_\infty + ||\nabla \tau||_\infty)$$
and
$$||[L_\tau, V_J]|| \le C_2 (||\nabla \tau||_\infty + ||\Delta \tau||_\infty)$$

• In conclusion:

$$||S_J^n L_{\tau} x - S_J^n x|| \le n^{3/2} C ||x|| (||\nabla \tau||_{\infty} + ||\Delta \tau||_{\infty} + \frac{||\tau||_{\infty}}{2^J})$$

Proof step 1

$$A_J x = x \star \phi_J \text{ and } V_J x = \{x \star \psi_\lambda\}_{\lambda \in \Lambda}$$
 and $W_J = \{A_J, V_J\}$

• Assume we proved that for ϕ , ψ regular enough, we get:

$$||A_J L_\tau - A_J|| \le C_1 (2^{-J} ||\tau||_\infty + ||\nabla \tau||_\infty)$$
and
$$||[L_\tau, V_J]|| \le C_2 (||\nabla \tau||_\infty + ||\Delta \tau||_\infty)$$

Theorem: If ϕ , ψ are regular enough, $||W_J|| \le 1$ and if $\int_u \psi(u) du = 0$, there exists C such that for any J, if $||\nabla \tau||_{\infty} \le \frac{1}{2}$, then:

$$||S_J^n L_\tau x - S_J^n x|| \le n^{3/2} C ||x|| (||\nabla \tau||_\infty + ||\Delta \tau||_\infty + \frac{||\tau||_\infty}{2^J})$$

constants are suboptimal

Stability to deformations: 1.42

• Proposition: Assume: $\int_{\mathbb{R}^n} \|\nabla \phi(u)\| du < \infty$ and $\int_{u} |\phi(u)| du < \infty$

Then there exists C>0 such that for any J and $\|\nabla \tau\|_{\infty} \leq \frac{1}{2}$:

$$||A_J - A_J L_\tau|| \le C(2^{-J} ||\tau||_\infty + ||\nabla \tau||_\infty)$$

Commutation with

deformations of high-frequencies

• Proposition: Assume that ψ is regular and $\int_{u}^{\infty} \psi(u) du = 0$ then there exists C such that for any J and $\|\nabla \tau\|_{\infty} \leq \frac{1}{2}$:

$$||[L_{\tau}, V_J]|| \le C(||\nabla \tau||_{\infty} + ||\Delta \tau||_{\infty})$$

Summary of the Scattering's properties we discussed

• Scattering is stable:

$$||S_J x - S_J y|| \le ||x - y||$$

• Linearize small deformations:

$$||S_J L_\tau x - S_J x|| \le C||\nabla \tau|| ||x||$$

• Invariant to local translation:

$$||a|| \ll 2^K \Rightarrow S_J L_a x \approx S_J x$$

• For λ , u, $S_J x(u, \lambda)$ is **covariant** with

if
$$\forall u \forall g \in SO_2(\mathbb{R}), g.x(u) \triangleq x(g^{-1}u)$$

$$S_J(g.x)(u,\lambda) = S_Jx(g^{-1}u,g^{-1}\lambda) \triangleq g.S_Jx(u,\lambda)$$

More Scattering

Scattering moments

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

• For a stationary process X (e.g., a texture)

$$E(X \star f) = E(X) \star f$$

• This leads to the Expected Scattering:

$$\bar{S}[\lambda_1] = \mathbb{E}|X \star \psi_{\lambda_1}|$$

Modulus is important because it can be 0!

$$\bar{S}[\lambda_1, \lambda_2] = \mathbb{E}||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|$$

can be estimated via an unbiased estimator:

$$S[\lambda_1, \lambda_2]X = \int ||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|$$

MUARoto-translation scattering.

$$S_0x=\int_u x(u)\,du$$
 and $Y^1_{j_1}(u, heta_1)=|x\star\psi_{j_1, heta_1}(u)|$ Ref.: PhD of L. Sifre

Let
$$S_1 x = \int_{u,\theta} Y^1(u,\theta) du d\theta$$
 and $\Psi(u,\theta) = \psi_{j_2,\theta_2}(u)\psi_k(\theta)$

then, we get:
$$Y_{j_1,j_2,\theta_2,k}^2(\theta,u) = \int_{\theta',u'} |x \star \psi_{j_1,\theta'}(u')| \psi_{j_2,\theta_2+\theta'}(u-u') \psi_k(\theta-\theta') du \, d\theta$$
Let $S_2 x = \int_{u,\theta} Y^2(u,\theta) \, du \, d\theta$

• Then Sx is invariant to roto-translation.

MLAOne generalization among 48

many

• CNN that is convolutional along axis channel:

$$x_{j+1}(v_1,...,v_j, \underbrace{v_{j+1}}) = \rho_j(x_j \star^{v_1,...,v_j} \psi_{v_{j+1}})(v_1,...,v_j)$$

$$x_J(v_J) = \sum_{v_1,...,v_{J-1}} x_{J-1}(v_1,...,v_{J-1},v_J)$$
Ref.: Hiearchical CNNs, Jacobsen et al.

- For x_j , we refer to the variable v_j as an attribute that discriminates previously obtained layer.
- Representation is finally averaged: invariant along translations by v. Very similar to equivariant CNNs

This lecture: Examples on a notebook!