Stability to diffeomorphisms
and translations.

FEdouard Oyallon

edouard.ovallon@cnrs.fr

CNRS, ISIR



mailto:edouard.oyallon@cnrs.fr

@ MLiA

Reminders and
complements



@®min  Wavelet Transform 3
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@ Mia We will discuss widely the
Scattering Transform.

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

e Successfully used in several applications: All variabilities

¥ M < Y < are known
Small deformations
+Translation

e [extures /Rotat10n+Scale
X d Al Y Gy
; : !

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L and Mallat S. \
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e The design of the scattering transform is guided by the euclidean

group.

e A scattering transform is a combination of complex-valued wavelets
and modulus non-linearity.
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®MEMOtiV3tiOH to introduce the"°-....

Scattering Transform
e Compared to a Deep Neural Network, the Scattering

Transform is well-understood mathematically when all

variabilities are deduced from symmetries.

e Involves no-learning: allows to obtain guarantees on the
filters.

e State-of-the-art on simple benchmarks... what about
complex ones?

e [.et us discuss some benchmarks.



@ MLiA Two surprising

architectures (1)
BagNet (2019): A ————

LOCALFEATURES MODELS WORKS SURPRISINGLY
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@MuA Two surprising :
b oo architectures (2)

Dictionary P Dictionary D Repr(ege&nte)mtion
input T

0 1 1 patch 1 . 1

patch 2
. ] : . . + 2
Split the image - . 1 0 . . 1 . .

in overlapping patches
1 . L B BN

Find (-nearest neighbours

[

o

| ]

| ]

n
o
o
o

N EEE O N

Spatial
Ref.: The unreasonable effectiveness of per pa,tCh p

patches in deep convolutional kernel methods Average pooling
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OMLA Scattering Classification
Pipeline

e A global representation (2013):

—>SJ—D- L—>

no learning/ \

trained via SGD
e A local representation (2017):

trained end-to-end

* 241_’54—>W1_’W2_’W3 >

24_’S4'—’W1_’W2—>W3—>A_' L >

loeFrance o Sal— w, W, s Wi |
\

no learning




@ipPMirImageNet Top5-Accuracy“*?..

100%
807 AlexNet
70% (8 layers)
BagNet-9
(50 layers)
45%
2-layer CNN
25%
1-layer CNN
0.3% Random
~ guess
Supervised
Baselines

on ImageNet 224x224

80%

45%
35%

Scattering
Transform
+3-layers

Scattering
Transform
+1-layer

Random
CNNs

Scattering
Baselines

on ImageNet 224x224

60%

55%

+ 1-layer

2000 patches

Patches
Baselines

on ImageNet 64x64



@ MLiA

Stability to
groups of symmetries
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@ MLR

Group Invariance?

Tl



S MLA : .
3 methods to get invariance

w.r.t. translations

e Linear averaging

e Non-linear Fourier modulus

e Wavelets

12



@ MLiA

Translation

XL

: Rotation : /

i

y |z —yll2 = 2

v
Averaging is the key

to get invariants

y

High dimensionality issues

.13
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@ MiaAn example: translation

e Translation is a linear action:

Vu € R*, Loz(u) = 2(u — a)

e In many cases, one wish to be invariant globally to
translation, a simple way is to perform an averaging:

Ao = [ Lysda= [ o

e Even if it can be localized, the averaging keeps the low

frequency structures: the invariance brings a loss of

% 3

information! *

illedeFrance




S MuA Another example

Fourier moduli

o Consider: x — |Fz

e This is clearly invariant to translations but. ..

F | Fx F1 S
h
( T )
Modulus Phase

reconstruction reconstruction

15



@ wMmin =y

An example of non trivial-invariants on
non-trivial groups: the roto-translation

Ref.: PhD of L. Sifre

* Roto-translation ST (F)=R? x SO5(R) 1s a non
commutative group:

(u,0).(v,0) = (u+ rov, 0 + ©)

g.9 = LyrgLyr_grer, = (U + 190, 0 + )
e We can define convolutions, Fourier, along this
group!
Why?

P X=X
N3 A ) e



Dmin

Fourier modulus of the same images. . .

---------
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@ w™ia Invariances via analytic
wavelets

e Analytic wavelets permit to build stable invariants

Ref.: Group Invariant Scattering, Mallat S

to small translations by a:

/\

Lo(x*1)) =




@ MLiA
Link with the AlexNet?

Demodulation:

i IW “H | \P\W
,, W i Wl |

-

<X
g

-

average pooling

For a Gabor wavelet: /

/ \x*im(uﬂdu%/ ReLU(x R () () duc
0 /1 JO

up to constants



@ MLR

Stability to deformations?

.20



@ MLA Diffeomorphism o

e Let E,F CRY ¢: E — F ,E, Fopen.¢is a diffeomorphism if:
- is bijective
- both ¢, ¢~ ! are differentiable.
It is said C* if ¢, ¢ 'are C¥ Smooth if ¢, ¢ are C*for any k.

e Theorem (Local inversion): Let ¢ : Q@ — R%a C¥ function
with © C R% open .
If det(0d(z)) # 0 then there is U,V open sets withx € U
such that ¢ : U — V is a C* -diffeomorphism.

e Theorem (Global inversion): Let ¢ : R? - R? aC*
function, then ¢ is a C*-diffeomorphism with d(R%) = R® if
and only if for any z: det(d¢(x)) # O

and lim ||¢(x)|| = oo

|z ||— o0




PMmun Deformations:

e Consider: 7 € C°° and define:
|T|loo =sup||7|| and [|VT|oc =sup||VT|
u u

If ||VT|loo <1 then: T — 7 & Diff*®

In this case, we can introduce:

L.z(u) = xz(u —7(u))

Small deformations are locally group which is quite high-dimensional.

And, you don’t want to be fully invariant to diffeomorphisms!

.22



@ Mmlip =
Stability to group of symmetrles

L1 [ [ L L L fofor s

diffeo

=>

mor- [~

phism A 1 (introduce: HAT”oo — SU-p HT( ) ( )”

11///////1[

e Two groups are of interest: dlffeomorphlsms and
translations.

d(I—7,1) & sup |V7(2)||+ sup |[7(z)||+ sup |[7(z) —7(y)]
x€R4 rER? x,yER

4777277 111

l[l/////l]lllll

e Stability means thus here:
|®(z) — ®(Lrz)|| < C|z|dI —7,1)

e Lemma: It |vr| < ! thenI— Tis a diffeomorphism and:

2
L || < 2°
1 —det(I — V7(u))| <d||VT| e
27% < |det(I— V) (u)| <2°




@ Mia A motivating example

e Translation invariance and stability to
deformations? Why not:

Oz (w) = |Z(w)
Again, doesn’t work!

Consider: 7(u) = su,1 > s > 0

.24

Deformations
Lyx(u) =x(u— 7(u))

(1)

Let z(u) = e™"g(u) thus: L, x(w) = 1 g(w — wo)
1 —s | 1 —s
d
then: 1 an HCI>L7-$|| — HgH
Ag ——Ag V1-—
2(w)la — Proof: Construct (xn, Tn)
st ol = 1
[ Vml =0
o ) 8 but:

wo
1 —s

|®L, x, — Px,| > 1



@MLIA Remark on the non-linearity?

e Theorem (Bruna): Let M : L*(R%) — L*(R%)s.t. M is a
non expansive operator,|| M (x) — M(y)|| < ||z — y|| and
assume that L M = M L, meaning that M commutes

with the action of diffeormophisms. Then:

Ref.: PhD Joan Bruna + Your homework!!!

Jp:R — C:Vu € RY Mxz(u) = p(x(u))



@ MLR

The Scattering Transform

.26



@ miin Definition of the

Scattering Transform A\
W1,
Define a path of length n as()\h . )\n) | | ®
where A = (6,279), |\ = 277 '
Ao l@ W2

Let us fix mother wavelet 10 and low-pass filter @, smooth, with fast decay.

Definition: The Scattering path of S J[)\l, oo )\n]x is given by:

SiIM, A S x| * L x| * oy
Definition: Scattering Transform of order n:
STx 2 {S7A1, o Ak s, A k<n

Its norm si given by:
1S5 =" > 1S5, Akl
)\1,...,)\k,k§n

We will also write the Scattering Transform as: S jx = {S;”a?}nzo
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OMLAP 6 Scattering Transform

e Main principle: cascade wavelets AND modulus non-linearity.

Depth: "order" (in practice order 2) ; J: "Scale"
XL
*Qg

%] [z 1|

SJ$Z{£E*¢J,



@ Mia Scattering as a CNN 2

™ T 37

B . Order 2
J—3,96{0,4,2, 4} \/y grjeré
R 1 A
Vg (w) = ﬁf]e(g)ﬁb(g) "
1 ~ w, -
() = Z5h(3)0(3)

O Modulus h > 0 Scattering coeflicients
are only at the outpu

Recursive Interferometric Representations, S Mallat



@MLA  Properties of the Scatteriné‘g-?.

Transform:
A non-linear representation which depends on an invariance

parameter J and n wavelet transforms.

e As it cascades unitary operators, Scattering is stable:

1572 = Syl < [lz —y|

e Thanks to wavelets, it linearizes small deformations:

[S7x = SyLral < Cp||VT|][z]]
e Thanks to low-pass filter, it is invariant to local translation:

la|| < 27 = STL,x ~ Shx



“panda” “gibbon”

57.7% confidence 09.3% confidence

e NNs are super sensitive to input noise

e Indeed, the NN is at most |[W;

W ||-Lipschitz

Ref.: Lipschitz Regularity of deep neural

. networks, Scaman and Virmaux
inf €]
D () £ (w+e)
Or even for every class, there are Thresher @ Labrador
algorithms with parameters (G, /i) S.t.: N
- Flagpole Labrador
P(O(X +6)#B(X)) >1—& =
HéH < € % Tibetan mastiff B Tibetan mastiff
— 2

Ref.: Universal adversarial perturbations,
Moosavi et al.

.31
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Several features ma

1st order
coefficients

Example of Scattrin coefficients

.32



@MUA  Scaling scattering on GPUs™

Ref.: Thesis, EO

Y

EEssEEEEEgEEEEnnn

-

Lowpass
— 1st wavelet

—— 2nd wavelet

® Modulus

Naive algorithm

Save a lot of memory!
00 speed-up on GPU

ALY A

g

Efficient algorithm



@ MLR

Scattering Transform
Theory

.34



@ MLR

Definition & non-
expansivity

.35



@ MLR Scattering Transform 36
defined via Integral Operators

Coefficients of the scattering transform are given by:

A, Upx = x Ajz =2 %07 and Vir =4{x*Ux}ren
/N/J st Wi =V U Az
S0 Uiz Here:
S [A] Vs T
W

Scattering of order n:

7T ={Ux1,.. 0 €0,i<n S [ A1, o Aj]}
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@ MLA Non-expansivity of
Scattering Transform

e Proposition: Given z € L*(R%),y € L*(R%) we
have, if [|[Wy| < 1:

1S5 — Syy|l < |z —y|

Proof:
Lemma: for z,y € L? (Rd):

x| = ylll < llz =yl

Remark: implies boundedness



@ MLR

Stability to deformations

.38



@ MLiA
Main theorem statement

Recall that: W xr = {.CE * %‘,9, T * gbj}e,jgj

e Theorem (Adapted from Mallat, 2012): If ¢, 1) are regular
enough, |W;| < land if /w(u) du =0 |, there exists C such that
1

for any J, if V7l < 3, then:

1S5 Lra — Sha| < 0?20Vl + |AT]|oo 57 )

In other words, the Scattering Transform is stable to small deformations.

T'ypical applications: n=2, J=3

.39



' .40
dmun Sketch of the proof.
Write: [A, B] — AB — BA which measures how A, B commute.

e First, we note that:
|Sta — SYL,x|)* =) |[AsUnw — AU Loz

e Next, we will bound each SC%ttering "paths'

|AsUnz — AyUnLrz|| < (c1l|AsLr — Ag|| + ne2||[L-, V]| ||

e Finally, we will bound each operators:
|AsLr — Ayl < C1277|I7]loo + VT [loo)

and

L7, Vil < Co([[VT]leo + [|AT][o0)
e In conclusion:

|S5 Lrx — Sz <0 2C||2)| (V7)o + [|AT]]oo - 57 )




O MUA Proof step 1

Ajr =z * @7 and Vyz = {x %1V} rea

and WJ — {AJ,VJ}

e Assume we proved that for ¢, ¢ regular enough, we get:

| ALy = Agll < C127 |7l o0 + (V7| s0)

and

L7, Vil < Ca([|VT]loo + [[AT]lo0)

o Theorem: If ¢, 1) are regular enough,||W;|| < land if
, there exists C such that for any J, if||V7|. < % . then:

Y(u)du =0

|S7Lrz — S| < n®2C|z||(V7[loo + [ AT]|o

\—

constants are suboptimal

, HTHoo)
I 2J

41
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@MUA Stability to deformations:

low-pass filter
e Proposition: Assume: /\|V¢(u)\|du < oo and /!¢(u)!dU< 00

1

Then there exists C>0 such that for any J and ||V7]|e < 5

[As = AsL: | < C27 7]l + IV 7l 0)



@ MLR Commutation with o
deformations of high-frequencies

e Proposition: Assume that 1 is regular and /[ (u)du :10

then there exists (' such that for any J an NVT oo < 5

L7, Villl < CUIVT][oo + [AT| o)



@MLIA  Summary of the Scattering’vé’%
properties we discussed

e Scattering is stable:
|Ssx — Syy|| < ||z -y
e Linearize small deformations:

|SsLrx — Syz| < CVTl||z]]
e Invariant to local translation:
la|| < 2% = S;L,x ~ Sy
e For A\ u, Syx(u,\) is covariant with

if YuVg € SO2(R), g.xz(u) = z(g~  u)
Sy(g.x)(u,\) = Syz(g  u, g N = .5 z(u, \)



@ MLR

More Scattering

45
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@ wMia Scattering moments

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

e For a stationary process X (e.g., a texture)

E(X % f) = E(X)* f

e This leads to the Expected Scattering:

S[)\l] = E|X %y, | Modulus 1s important
because it can be 0!

S[A1, A2] = E||X * x| x 9, |

can be estimated via an unbiased estimator:

S[)‘17)‘2]X:/HX*¢>\1‘*¢>\2‘




@ MiARoto-translation scattering’

Sox:/x(u)du and Y (u,00) = |2k g0 ()]
u

Let Sz — / Yi(u,0)dudd and W(u,B) =, 4. (u)br(6)
then, we get: 0

Y7 o se(050) = / 2 x 1y 00 (W) [55,00+00 (u — )i (6 — 0")du dO

/ /
0’ ,u

Let SQCE:/ Y?(u,0) dudf
u,0

e Then Sz is invariant to roto-translation.




@ MiAOne generalization among™
many

e CNN that is convolutional along axis Channel
A

CUj—|-1(Ul, °°°7vjavj—|—1) — p](xj kLot w’uj+1 U1, ..

ZE‘J(UJ) — Z xJ—l(/Ulv'“vvJ—lvvJ) ﬁ
V1,...,VJ—1 £l?1
Ref.: Hiearchical CNNs, Jacobsen et al. — "ﬁ —

e For T, we refer to the variable Ug as an attribute

that discriminates previously obtained layer.

e Representation is finally averaged: invariant along
translations by . Very similar to equivariant CNNs



@ MLR

This lecture: Examples on a
notebook!

.49



