EXERCICES. ECOLE POLYTECHNIQUE. MAP670R-2022 ADVANCED TOPICS
IN DEEP LEARNING.

EXERCISE 1 (Back-propagation)  Assume that the layers of a MLP write for 0 < j < J:
iy = Wiprj = fi(z;, Wj)

so that z; € R™ and that ;5 € R™ is fed to ¢ : R™ — R. We write also ®(z) = z; the output of the
MLP. Note this implies that W; € R™*"i+1. We write £;(x;) = {(W;p...oW;px;) and ¢;(z) = ;. We will
write (fi41 0 f5) (25, Wi, Wisn) = fia(f (a5, Wy), Wjga)".

1. Compute 0y, fj(x;, W;) and Ow, fi(x;, Wj).

2. Verify that £(®(x)) = ¢; 0 ¢;(x)

3. Compute V, /;.

4. Deduce Vyy, /.

We remind that {f(z),z € X'} is a centered Gaussian process if for any z1, ...,z € X, (f(x1), ..., f(Tr))
is a Gaussian variable with law N(0,X). In this case,

Zij = K(.’L‘i7.’L‘j) s

where K is the covariance function of f. In the following, the Gaussian processes will be centered.
We will also write:

1
Z / - T_ .1 1
1(z,z) wlm x', (1)
and also:
Yiq(z,2)=E . el u)p(v)|, 2
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We will consider the following model:
B(W: ) = Wy pWy g Wy (@)
L) = J /—wJp J—1 F)J—lp“.p 1 /—w1$7

and W (0) is a Gaussian random initialization such that E[W (0)W (0)T] = I. We assume that =, 2’
have non-negative entries.

EXERCISE 2 (The Neural Tangent Kernel)  We introduce here:

J
Ky (o) (w,2") =) 0w, (a; W (0))dw, ®(a'; W (0)" . ()

j=1
1. What is the shape of Kyy(g)? and X;(x,2')?
2. Show that:

1
Ky o) (z,2") = win(I)Jfl(ﬁ)p(I)J—l(x/)T (6)

1
+ w*JWJ[apr_law‘I’J—l(x)awq’J—l(f/)T[aP]gJ_le (7)

3. Prove by induction that Fj i (x) £ limy, o0 .- liMy, oo @4 k() is @ Gaussian process with kernel ¥;
for j < J and k < wj41, and that the family {F} ;}« is a family of independent Gaussian processes.



4. Show that we have the following limit:
J . .
lim .. lim Ky)(z,2') = 5% 5,1, (8)
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Observe that w; and wy,1 are constant.

EXERCISE 3 (The Neural Tangent Kernel dynamics)  Now, we assume that the training dynamic is given
for t € [0, T by:

LW (1) = —\ow B (W (1) TVR@(V(1) )

for some step size A > 0 given a posterio. We also assume that, as the layer grows: fOT IVR(®(W(t)))| dt <
C for some universal constant. For the sake of simplicity, we will also assume that w; = wy,1 = 1 and
w; =w for 1 < j < J+1and that |[p/| <1.

1. Compute LW (t).

2. Let:
u(t) = (Wi @t) = Wi(O)[] + W1 0) |, --., W (t) = W (0)]| + W5 (0)]])-

Show that for some C’ > 0:

ISWON < — I~ [VRE@V ()]

3. Show that for some C” > 0:
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4. Deduce that ||W;(t) — W;(0)|| — 0.

5. Using a reasoning similar to Exercise 2, question 2, show that there is C'; > 0 such that:

0w @(W(2); ) — Ow (W (0); )| < J(Sl;p W51+ W5 0)H)" sup IW;(t) = W; ()]

6. Show that |luu® — voT|| < (||lul + ||lv||)||w — v||. Prove that:

Am [ Kw@y — Kwoyll =0.

Comment the result. (We will admit that fOT IVR(®(W(t)))|| bounded is satisfied for Gaussian entries
and the MSE loss)



