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Exercise 1 (Back-propagation) Assume that the layers of a MLP write for 0 ≤ j < J :

xj+1 = Wjρxj = fj(xj ,Wj)

so that xj ∈ Rnj and that xJ ∈ RnJ is fed to ℓ : RnJ → R. We write also Φ(x) = xJ the output of the
MLP. Note this implies that Wj ∈ Rnj×nj+1 . We write ℓj(xj) = ℓ(WJρ...ρWjρxj) and ϕj(x) = xj . We will
write (fj+1 ◦ fj)(xj ,Wj ,Wj+1) ≜ fj+1(fj(xj ,Wj),Wj+1)‘.

1. Compute ∂xj
fj(xj ,Wj) and ∂Wj

fj(xj ,Wj).

2. Verify that ℓ(Φ(x)) = ℓj ◦ ϕj(x)

3. Compute ∇xj ℓj .

4. Deduce ∇Wj
ℓ.

We remind that {f(x), x ∈ X} is a centered Gaussian process if for any x1, ..., xk ∈ X , (f(x1), ..., f(xk))
is a Gaussian variable with law N (0,Σ). In this case,

Σij = K(xi, xj) ,

where K is the covariance function of f . In the following, the Gaussian processes will be centered.
We will also write:

Σ1(x, x
′) =

1

w1
xTx′, (1)

and also:
Σj+1(x, x

′) = E
(u,v)∼N (0,

[
Σj(x, x) Σj(x

′, x)

Σj(x, x′) Σj(x
′, x′)

]
)
[ρ(u)ρ(v)], (2)

and:
Σ̇j+1(x, x

′) = E
(u,v)∼N (0,

[
Σj(x, x) Σj(x

′, x)

Σj(x, x′) Σj(x
′, x′)

]
)
[ρ̇(u)ρ̇(v)]] . (3)

We will consider the following model:

Φ(W ;x) = WJ
1

√
wJ

ρWJ−1
1

√
wJ−1

ρ...ρW1
1

√
w1

x , (4)

and W (0) is a Gaussian random initialization such that E[W (0)W (0)T ] = I. We assume that x, x′

have non-negative entries.

Exercise 2 (The Neural Tangent Kernel) We introduce here:

KW (0)(x, x
′) =

J∑
j=1

∂Wj
Φ(x;W (0))∂Wj

Φ(x′;W (0))T . (5)

1. What is the shape of KW (0)? and Σj(x, x
′)?

2. Show that:

KW (0)(x, x
′) =

1

wJ
ρΦJ−1(x)ρΦJ−1(x

′)T (6)

+
1

wJ
WJ [∂ρ]ΦJ−1

∂WΦJ−1(x)∂WΦJ−1(x
′)T [∂ρ]TΦJ−1

WT
J (7)

3. Prove by induction that Fj,k(x) ≜ limwj→∞ ... limw2→∞ Φj,k(x) is a Gaussian process with kernel Σj

for j ≤ J and k ≤ wj+1, and that the family {Fj,k}k is a family of independent Gaussian processes.
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4. Show that we have the following limit:

lim
wJ→∞

... lim
w2→∞

KW (0)(x, x
′) =

J∑
j=1

ΣjΣ̇j+1...Σ̇JI . (8)

Observe that w1 and wJ+1 are constant.

Exercise 3 (The Neural Tangent Kernel dynamics) Now, we assume that the training dynamic is given
for t ∈ [0, T ] by:

d

dt
W (t) = −λ∂WΦ(W (t))T∇R(Φ(W (t))) , (9)

for some step size λ > 0 given a posterio. We also assume that, as the layer grows:
∫ T

0
∥∇R(Φ(W (t)))∥ dt ≤

C for some universal constant. For the sake of simplicity, we will also assume that w1 = wJ+1 = 1 and
wj = w for 1 < j < J + 1 and that |ρ′| ≤ 1.

1. Compute d
dtWj(t).

2. Let:
u(t) = (∥W1(t)−W1(0)∥+ ∥W1(0)∥, ..., ∥WJ(t)−WJ(0)∥+ ∥WJ(0)∥).

Show that for some C ′ > 0:

∥ d

dt
Wj(t)∥ ≤ C ′

w(J−1)/2
∥u(t)∥J−1∥∇R(Φ(W (t)))∥

3. Show that for some C ′′ > 0:

| d
dt

∥u(t)∥2−J | ≤ C ′′

w(J−1)/2
∥∇R(Φ(W (t)))∥

4. Deduce that ∥Wj(t)−Wj(0)∥ → 0.

5. Using a reasoning similar to Exercise 2, question 2, show that there is CJ > 0 such that:

∥∂WΦ(W (t);x)− ∂WΦ(W (0);x)∥ ≤ J(sup
j

∥Wj(t)∥+ ∥Wj(0)∥)J−1 sup
j

∥Wj(t)−Wj(0)∥

6. Show that ∥uuT − vvT ∥ ≤ (∥u∥+ ∥v∥)∥u− v∥. Prove that:

lim
w→∞

∥KW (t) −KW (0)∥ = 0 .

Comment the result. (We will admit that
∫ T

0
∥∇R(Φ(W (t)))∥ bounded is satisfied for Gaussian entries

and the MSE loss)

2


