Exercise 1 (Back-propagation) Assume that the layers of a MLP write for $0 \leq j<J$:

$$
x_{j+1}=W_{j} \rho x_{j}=f_{j}\left(x_{j}, W_{j}\right)
$$

so that $x_{j} \in \mathbb{R}^{n_{j}}$ and that $x_{J} \in \mathbb{R}^{n_{J}}$ is fed to $\ell: \mathbb{R}^{n_{J}} \rightarrow \mathbb{R}$. We write also $\Phi(x)=x_{J}$ the output of the MLP. Note this implies that $W_{j} \in \mathbb{R}^{n_{j} \times n_{j+1}}$. We write $\ell_{j}\left(x_{j}\right)=\ell\left(W_{J} \rho \ldots \rho W_{j} \rho x_{j}\right)$ and $\phi_{j}(x)=x_{j}$. We will write $\left(f_{j+1} \circ f_{j}\right)\left(x_{j}, W_{j}, W_{j+1}\right) \triangleq f_{j+1}\left(f_{j}\left(x_{j}, W_{j}\right), W_{j+1}\right)^{d}$.

1. Compute $\partial_{x_{j}} f_{j}\left(x_{j}, W_{j}\right)$ and $\partial_{W_{j}} f_{j}\left(x_{j}, W_{j}\right)$.
2. Verify that $\ell(\Phi(x))=\ell_{j} \circ \phi_{j}(x)$
3. Compute $\nabla_{x_{j}} \ell_{j}$.
4. Deduce $\nabla_{W_{j}} \ell$.

We remind that $\{f(x), x \in \mathcal{X}\}$ is a centered Gaussian process if for any $x_{1}, \ldots, x_{k} \in \mathcal{X},\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right)$ is a Gaussian variable with law $\mathcal{N}(0, \Sigma)$. In this case,

$$
\Sigma_{i j}=K\left(x_{i}, x_{j}\right)
$$

where K is the covariance function of f. In the following, the Gaussian processes will be centered.
We will also write:

$$
\begin{equation*}
\Sigma_{1}\left(x, x^{\prime}\right)=\frac{1}{w_{1}} x^{T} x^{\prime} \tag{1}
\end{equation*}
$$

and also:

$$
\Sigma_{j+1}\left(x, x^{\prime}\right)=\mathbb{E}_{(u, v) \sim \mathcal{N}\left(0,\left[\begin{array}{ll}
\Sigma_{j}(x, x) & \Sigma_{j}\left(x^{\prime}, x\right) \tag{2}\\
\Sigma_{j}\left(x, x^{\prime}\right) & \Sigma_{j}\left(x^{\prime}, x^{\prime}\right)
\end{array}\right]\right.}[\rho(u) \rho(v)],
$$

and:

$$
\left.\dot{\Sigma}_{j+1}\left(x, x^{\prime}\right)=\mathbb{E}_{(u, v) \sim \mathcal{N}\left(0,\left[\begin{array}{ll}
\Sigma_{j}(x, x) \tag{3}\\
\Sigma_{j}\left(x, x^{\prime}\right) & \Sigma_{j}\left(x^{\prime}, x\right) \\
\Sigma_{j}\left(x^{\prime}, x^{\prime}\right)
\end{array}\right]\right.}[\dot{\rho}(u) \dot{\rho}(v)]\right] .
$$

We will consider the following model:

$$
\begin{equation*}
\Phi(W ; x)=W_{J} \frac{1}{\sqrt{w_{J}}} \rho W_{J-1} \frac{1}{\sqrt{w_{J-1}}} \rho \ldots \rho W_{1} \frac{1}{\sqrt{w_{1}}} x \tag{4}
\end{equation*}
$$

and $W(0)$ is a Gaussian random initialization such that $\mathbb{E}\left[W(0) W(0)^{T}\right]=\mathbf{I}$. We assume that x, x^{\prime} have non-negative entries.
Exercise 2 (The Neural Tangent Kernel) We introduce here:

$$
\begin{equation*}
K_{W(0)}\left(x, x^{\prime}\right)=\sum_{j=1}^{J} \partial_{W_{j}} \Phi(x ; W(0)) \partial_{W_{j}} \Phi\left(x^{\prime} ; W(0)\right)^{T} \tag{5}
\end{equation*}
$$

1. What is the shape of $K_{W(0)}$? and $\Sigma_{j}\left(x, x^{\prime}\right)$?
2. Show that:

$$
\begin{align*}
K_{W(0)}\left(x, x^{\prime}\right) & =\frac{1}{w_{J}} \rho \Phi_{J-1}(x) \rho \Phi_{J-1}\left(x^{\prime}\right)^{T} \tag{6}\\
& +\frac{1}{w_{J}} W_{J}[\partial \rho]_{\Phi_{J-1}} \partial_{W} \Phi_{J-1}(x) \partial_{W} \Phi_{J-1}\left(x^{\prime}\right)^{T}[\partial \rho]_{\Phi_{J-1}}^{T} W_{J}^{T} \tag{7}
\end{align*}
$$

3. Prove by induction that $F_{j, k}(x) \triangleq \lim _{w_{j} \rightarrow \infty} \ldots \lim _{w_{2} \rightarrow \infty} \Phi_{j, k}(x)$ is a Gaussian process with kernel Σ_{j} for $j \leq J$ and $k \leq w_{j+1}$, and that the family $\left\{F_{j, k}\right\}_{k}$ is a family of independent Gaussian processes.
4. Show that we have the following limit:

$$
\begin{equation*}
\lim _{w_{J} \rightarrow \infty} \ldots \lim _{w_{2} \rightarrow \infty} K_{W(0)}\left(x, x^{\prime}\right)=\sum_{j=1}^{J} \Sigma_{j} \dot{\Sigma}_{j+1} \ldots \dot{\Sigma}_{J} \mathbf{I} \tag{8}
\end{equation*}
$$

Observe that w_{1} and w_{J+1} are constant.

Exercise 3 (The Neural Tangent Kernel dynamics) Now, we assume that the training dynamic is given for $t \in[0, T]$ by:

$$
\begin{equation*}
\frac{d}{d t} W(t)=-\lambda \partial_{W} \Phi(W(t))^{T} \nabla \mathcal{R}(\Phi(W(t))) \tag{9}
\end{equation*}
$$

for some step size $\lambda>0$ given a posterio. We also assume that, as the layer grows: $\int_{0}^{T}\|\nabla \mathcal{R}(\Phi(W(t)))\| d t \leq$ C for some universal constant. For the sake of simplicity, we will also assume that $w_{1}=w_{J+1}=1$ and $w_{j}=w$ for $1<j<J+1$ and that $\left|\rho^{\prime}\right| \leq 1$.

1. Compute $\frac{d}{d t} W_{j}(t)$.
2. Let:

$$
u(t)=\left(\left\|W_{1}(t)-W_{1}(0)\right\|+\left\|W_{1}(0)\right\|, \ldots,\left\|W_{J}(t)-W_{J}(0)\right\|+\left\|W_{J}(0)\right\|\right)
$$

Show that for some $C^{\prime}>0$:

$$
\left\|\frac{d}{d t} W_{j}(t)\right\| \leq \frac{C^{\prime}}{w^{(J-1) / 2}}\|u(t)\|^{J-1}\|\nabla \mathcal{R}(\Phi(W(t)))\|
$$

3. Show that for some $C^{\prime \prime}>0$:

$$
\left|\frac{d}{d t}\|u(t)\|^{2-J}\right| \leq \frac{C^{\prime \prime}}{w^{(J-1) / 2}}\|\nabla \mathcal{R}(\Phi(W(t)))\|
$$

4. Deduce that $\left\|W_{j}(t)-W_{j}(0)\right\| \rightarrow 0$.
5. Using a reasoning similar to Exercise 2, question 2, show that there is $C_{J}>0$ such that:

$$
\left\|\partial_{W} \Phi(W(t) ; x)-\partial_{W} \Phi(W(0) ; x)\right\| \leq J\left(\sup _{j}\left\|W_{j}(t)\right\|+\left\|W_{j}(0)\right\|\right)^{J-1} \sup _{j}\left\|W_{j}(t)-W_{j}(0)\right\|
$$

6. Show that $\left\|u u^{T}-v v^{T}\right\| \leq(\|u\|+\|v\|)\|u-v\|$. Prove that:

$$
\lim _{w \rightarrow \infty}\left\|K_{W(t)}-K_{W(0)}\right\|=0 .
$$

Comment the result. (We will admit that $\int_{0}^{T}\|\nabla \mathcal{R}(\Phi(W(t)))\|$ bounded is satisfied for Gaussian entries and the MSE loss)

