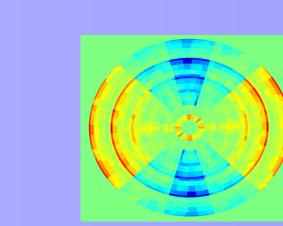


geometry

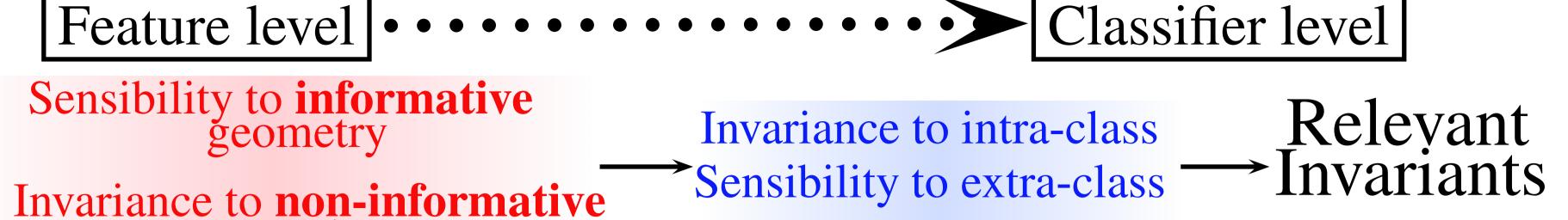
Deep Roto-Translation Scattering for Object Classification

Edouard Oyallon and Stéphane Mallat

DATA, Département Informatique, Ecole Normale Supérieure



Geometry vs Unsupervised

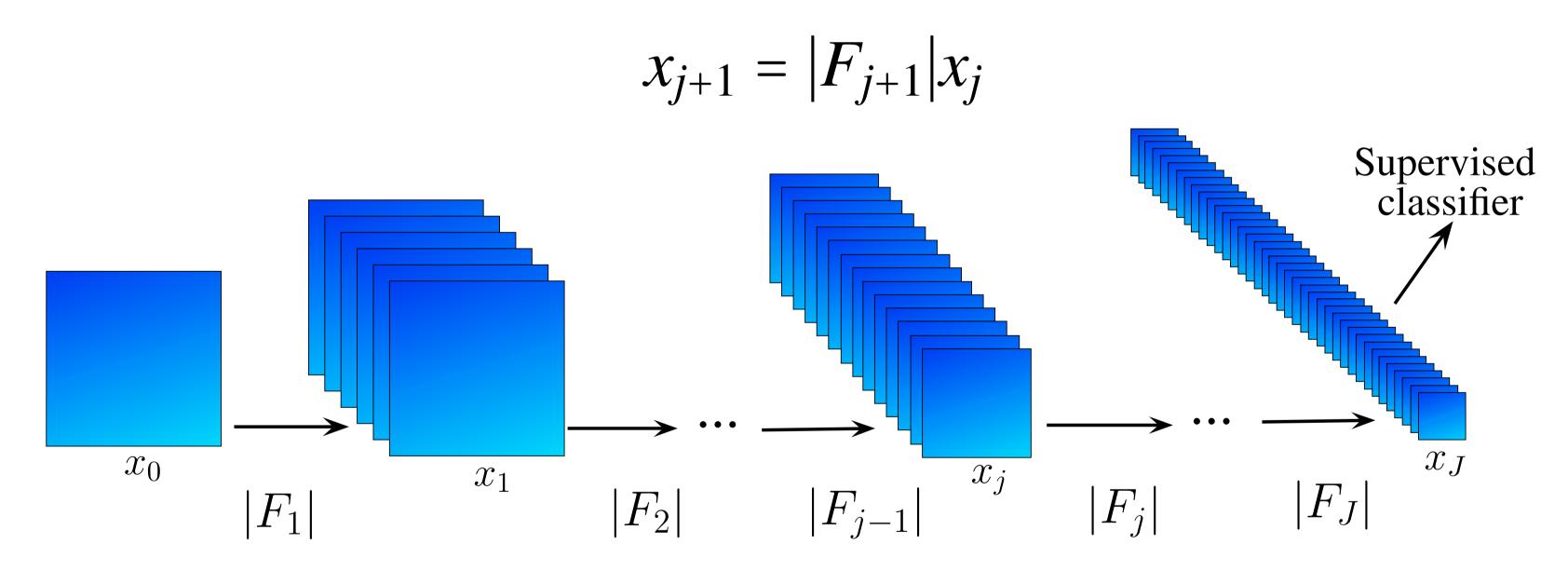


Unsupervised Supervised Prior Geometry DeepNet Class Geometry SIFT+BoW Scattering Geometry

We build a deep super-SIFT generic and geometric descriptor without learning competitive with unsupervisedly learned representations.

Deep Scattering representation

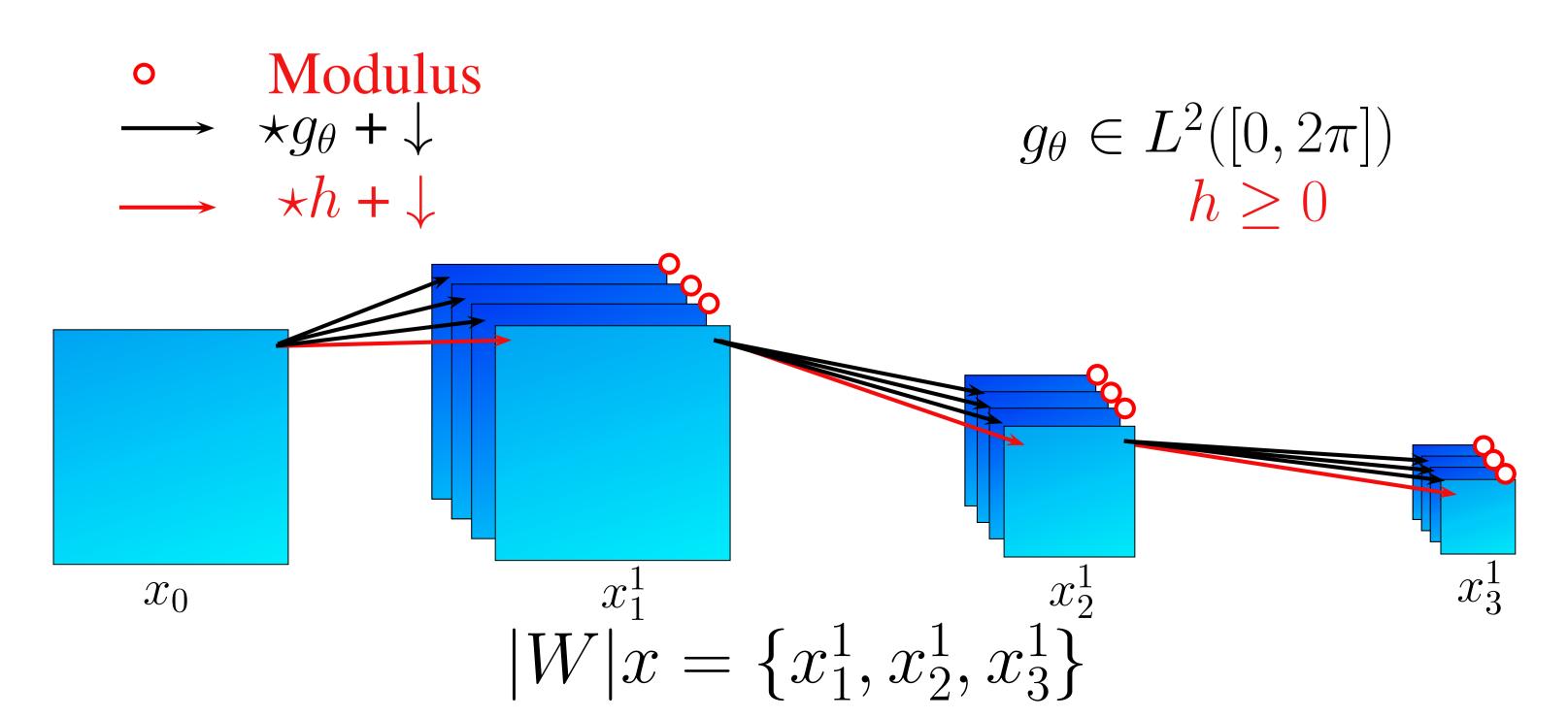
DeepNet as a deep cascade of filterbanks and nonlinearities:



Modulus of the wavelet transform as a deep cascade of filters and downsampling, followed by a complex modulus:

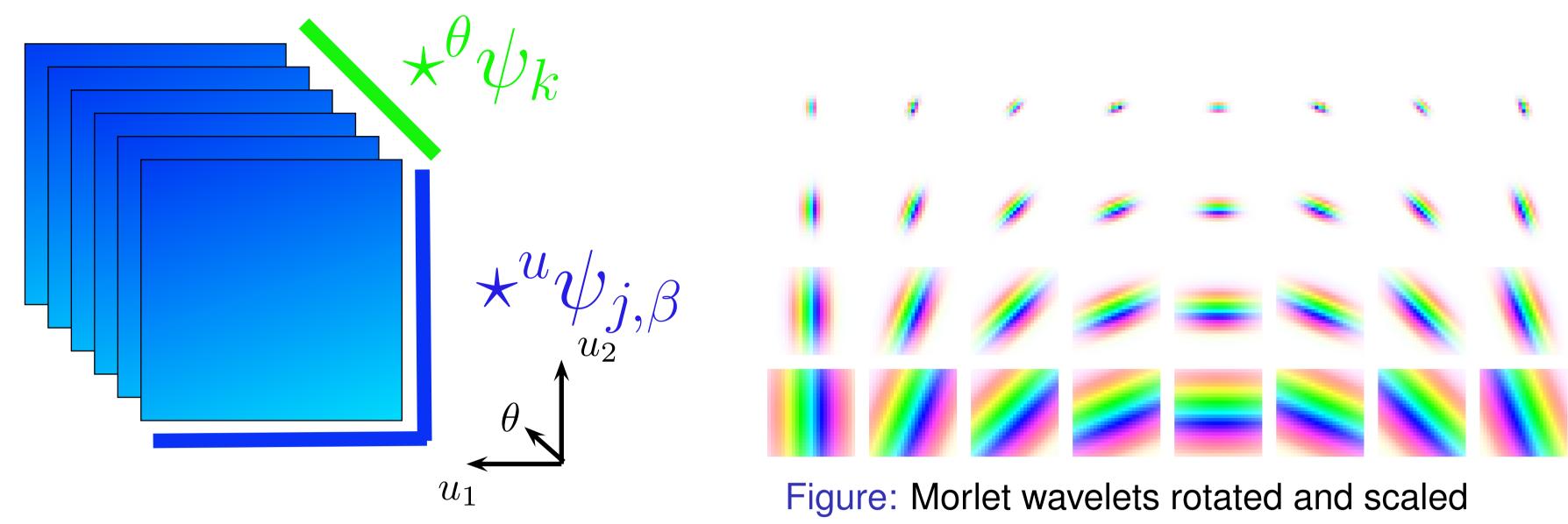
$$x_{j+1}^1(u,\theta) = |x_j^1(.,0) \star g_{\theta}|(2u)$$

$$x_{j+1}^1(u,0) = (x_j^1(.,0) \star h)(2u)$$



Then we build a 3D separable wavelet transform along space and angles for a path $q = (\beta, j_1, k, \theta)$:

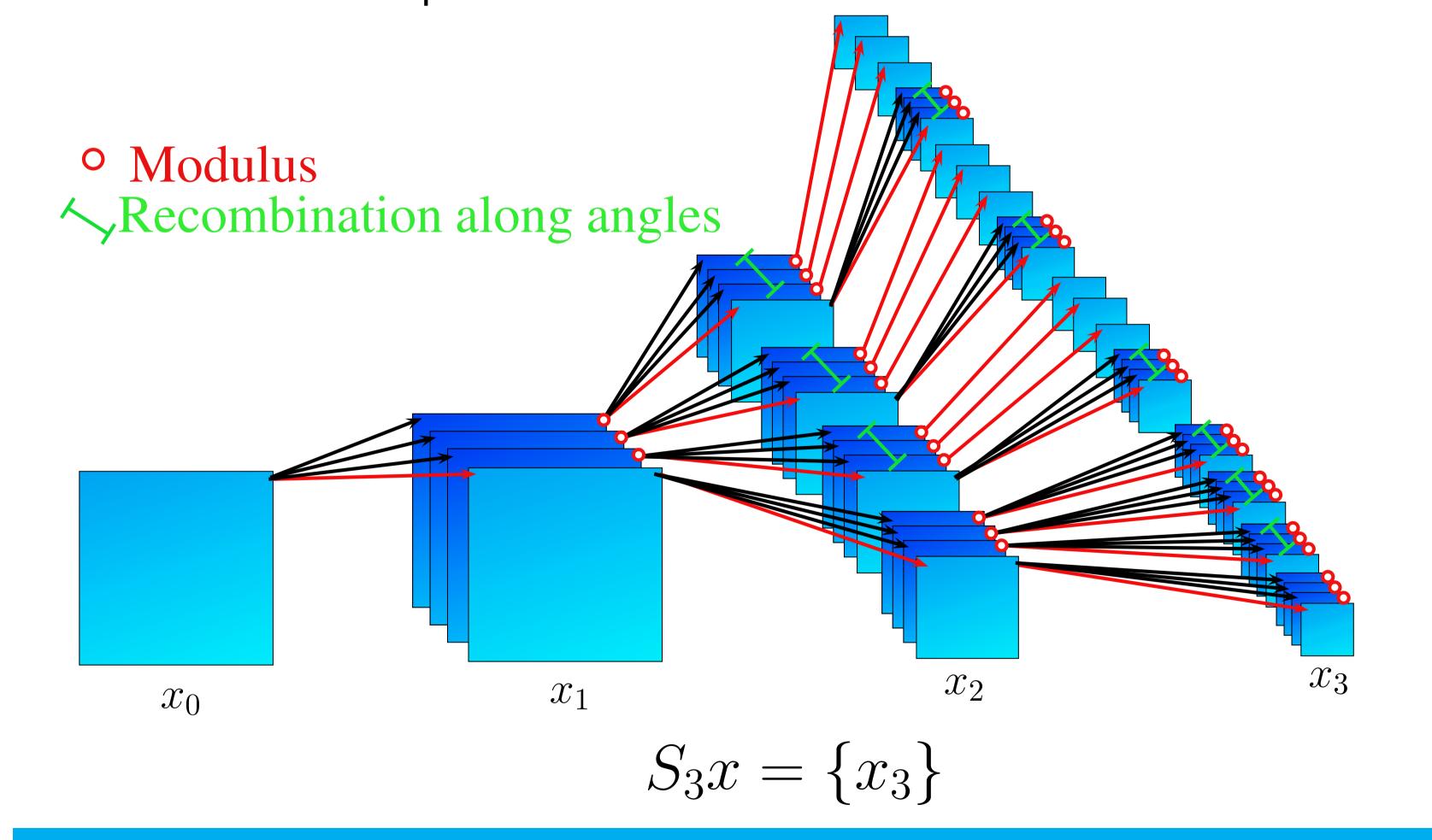
$$x_j^2(u,q) = |x_{j_1}^1 \star^u \psi_{j,\beta} \star^\theta \psi_k|(u,\theta)$$



- This separable convolution recombines angles, linearizing the deformations due to rotation.
- All the coefficients are finally averaged to achieve spatial invariance:

$$S_J x = \{x \star \phi_J, x_j^1 \star \phi_J, x_j^2 \star \phi_J\}_{j \leq J}$$

Thus, the Roto-Translation Scattering Transform is a deep cascade of filterbanks and complex modulus nonlinearities:



Classification pipeline

x S_J $S_J x$ \log M Standardization Gaussian SVM

- S_J is computed on every channels YUV of an image.
- ullet L is a projection supervisedly learned via a forward selection algorithm: Orthogonal Least Square (OLS).
- The log linearizes multiplicative luminance variations.
- Standardization: normalization of the mean and variance.
- Coefficients feed a Gaussian kernel SVM with unit variance.

Numerical results

Image inputs:

Figure: Caltech: 256 × 256 color images, 30 samples for training

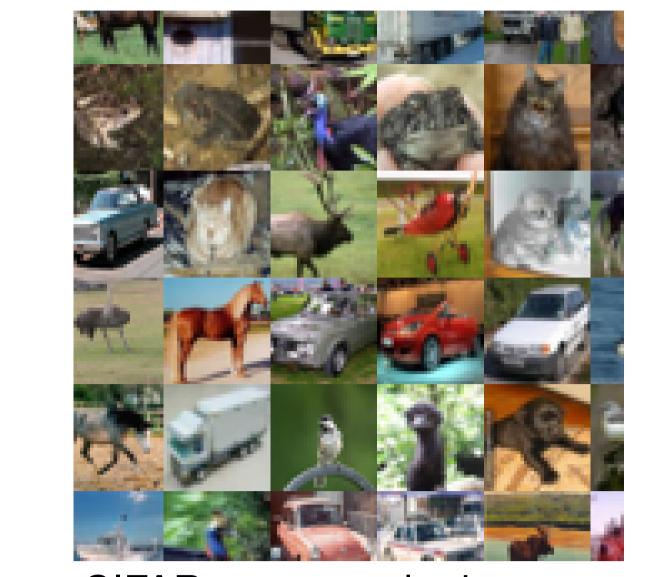


Figure: CIFAR: 32 × 32 color images, 500/5000 samples for training

Accuracies on Caltech101/256, CIFAR10/100:

oarabioo orr oarroorrio 17200,			
Method	Type	Acc.	
ScatNet	Prior	79.9	
M-HMP	Unsupervised	82.5	
CNN	Supervised	91.4	
	Method ScatNet M-HMP	Method Type ScatNet Prior M-HMP Unsupervised	

Table: Results for Caltech101, 101 classes, 1.10^4 samples.

Method	Type	Ac
ScatNet	Prior	82.
RFL	Unsupervised	83.
CNN	Supervised	91.

Table: Results for CIFAR-10, 10 classes, 6.10^4 samples.

Method	Type	Acc
ScatNet	Prior	43.6
M-HMP	Unsupervised	50.7
CNN	Supervised	70.6

Table: Results for Caltech256, 256 classes, 3.10^4 samples.

	Method	Type	Acc.
	ScatNet	Prior	56.8
	NOMP	Unsupervised	60.8
	CNN	Supervised	65.4

Table: Results for CIFAR-100, 100 classes, 6.10^4 samples.

Method	Caltech-101	CIFAR-10
T first order+SVM	59.8	72.6
T+SVM	70.0	80.3
T+OLS+SVM	75.4	81.6
TR+SVM	74.5	81.5
TR+OLS+SVM	79.9	82.3

Table: "T" and "TR" stands respectively for translation and roto-translation scattering.

Conclusion

- Generic and competitive representation with **few parameters**.
- More supervision could help to improve numerical results: adding more supervision at the top of the network... input of a DeepNet?
- ...or unsupervised layers? Fisher Vectors? Transform on the affine group?

Contacts:

- Website of the software ScatNetLight:
- https://github.com/edouardoyallon/ScatNetLight/releases/
- Website of the team:
- http://www.di.ens.fr/data/
- Edouard Oyallon edouard.oyallon@ens.fr

