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DATA, Département Informatique, Ecole Normale Supérieure
DATA

Geometry vs Unsupervised

▸

Feature level Classifier level

Invariance to non-informative Sensibility to extra-class

Sensibility to informative
Invariance to intra-class

Invariants
geometry

geometry Relevant

▸

SupervisedUnsupervisedPrior

DeepNet

SIFT+BoW

Scattering

Class
Geometry

Geometry

Adaptavity to
the dataset

Geometry

▸We build a deep super-SIFT generic and geometric descriptor without
learning competitive with unsupervisedly learned representations.

Deep Scattering representation

▸DeepNet as a deep cascade of filterbanks and nonlinearities:

xj+1 = ∣Fj+1∣xj
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▸Modulus of the wavelet transform as a deep cascade of filters and
downsampling, followed by a complex modulus:
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▸Then we build a 3D separable wavelet transform along space and angles for

a path q = (β, j1, k, θ):
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Figure: Morlet wavelets rotated and scaled

▸This separable convolution recombines angles, linearizing the
deformations due to rotation.

▸All the coefficients are finally averaged to achieve spatial invariance:

SJx = {x ⋆ φJ, x1
j ⋆ φJ, x2

j ⋆ φJ}j≤J
▸Thus, the Roto-Translation Scattering Transform is a deep cascade of
filterbanks and complex modulus nonlinearities:
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S3x = {x3}
Classification pipeline

x // SJ //SJx // log // L // Standardization // Gaussian SVM

▸SJ is computed on every channels YUV of an image.
▸L is a projection supervisedly learned via a forward selection algorithm:
Orthogonal Least Square (OLS).

▸The log linearizes multiplicative luminance variations.
▸Standardization: normalization of the mean and variance.
▸Coefficients feed a Gaussian kernel SVM with unit variance.

Numerical results

▸ Image inputs:

Figure: Caltech: 256 × 256 color images, 30
samples for training

Figure: CIFAR: 32 × 32 color images,
500/5000 samples for training

▸Accuracies on Caltech101/256, CIFAR10/100:
Method Type Acc.
ScatNet Prior 79.9
M-HMP Unsupervised 82.5
CNN Supervised 91.4

Table: Results for Caltech101, 101 classes,
1.104 samples.

Method Type Acc.
ScatNet Prior 43.6
M-HMP Unsupervised 50.7
CNN Supervised 70.6

Table: Results for Caltech256, 256 classes,
3.104 samples.

Method Type Acc.
ScatNet Prior 82.3
RFL Unsupervised 83.1
CNN Supervised 91.8

Table: Results for CIFAR-10, 10 classes,
6.104 samples.

Method Type Acc.
ScatNet Prior 56.8
NOMP Unsupervised 60.8
CNN Supervised 65.4

Table: Results for CIFAR-100, 100 classes,
6.104 samples.

Method Caltech-101 CIFAR-10
T first order+SVM 59.8 72.6
T+SVM 70.0 80.3
T+OLS+SVM 75.4 81.6
TR+SVM 74.5 81.5
TR+OLS+SVM 79.9 82.3

Table: ”T” and ”TR” stands respectively for translation and roto-translation scattering.

Conclusion

▸Generic and competitive representation with few parameters.
▸More supervision could help to improve numerical results: adding more
supervision at the top of the network... input of a DeepNet?

▸ ...or unsupervised layers? Fisher Vectors? Transform on the affine group?
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