

Reducing the input size

• CNNs for images are typically fed with large images that have some redundant structures. Can we exploit this for reducing the input size?

$N \!\!\times\!\! N$	 CNN

Input can be "small"?

Input

- We propose to introduce a representation which:
- Reduces the spatial resolution **and** dimensionality
- Preserves the input **and** is predefined, for natural im

Gabor wavelets and modulus

• We consider the Gabor wavelets, that have a good trade-off between space and frequency localization.

$\psi_{j,\theta}(u) = \frac{1}{2^{2J}}\psi(r_{-\theta}\frac{u}{2^{J}})$	•				-	
$\frac{\varphi_{\mathcal{I},\theta}(u)}{2} = 2^{2J} \frac{\varphi(\tau - \theta}{2} 2^{J})$			1		-	
$\phi_J(u) = \frac{1}{2^{2J}}\phi(\frac{u}{2^J}) \qquad j$		//		/	-	
$A_J x = x \star \phi_J$					-	
$Wx = \{x \star \psi_{j,\theta}\}_{\theta \in \Theta, 0 \le j \le \theta}$	$\leq J$				θ	

We observe that a translation x_a of x by a leads to a phase multiplication:

$$x_a \star \psi(u) \approx e^{i\omega_0^T a} x \star \psi(u)$$

• The enveloppe is more invariant to translations: ideal for A_J .

First order Scattering Transform

 $\mathcal{X} \longrightarrow W \longrightarrow | . | \longrightarrow A_J \longrightarrow$

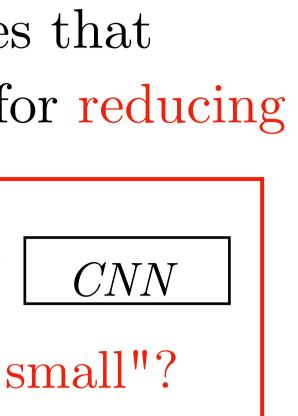
• The first order scattering is the succession of a wavelet transform, a point modulus and a spatial averaging.

$$Sx = \{ |x \star \psi_{j,\theta}| \star \phi_J, x \star \phi \}$$

• It is similar to a SIFT with appropriate wavelets.

Compressing the Input for CNN with the First Order Scattering Transform Edouard Oyallon,^{1,2}Eugene Belilovsky,³ Sergey Zagoruyko,² Michal Valko

(1) CentraleSupélec (2) INRIA (3) Mila



nages

J θ, j

It compresses the	input im	age:
	$\frac{\#Sx}{2} =$	_ (1
Ţ	#x	

J	
Compression	ratio

T	0		
$\frac{\#Sx}{\#x} =$	$=\frac{(1+\#\Theta J)}{2^J}$		
1	2	3	4
$2,\!2$	$1,\!1$	$0,\!39$	$0,\!13$

Information preservation

• We propose a simple algorithm for reconstructing order via MSE minimization:

 $x = \arg \inf_{\tilde{z}} \|Sx\|$

We observe that the first order Scattering does not lead to a significant loss when **reconstructing**:

Original

• We empirically observe that the loss of image details is due to the windowed averaging.

Classification performances

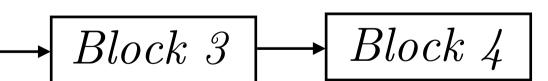
Block 2
Block (a)

We replace the initial block of a ResNet by the order-1 Scattering:

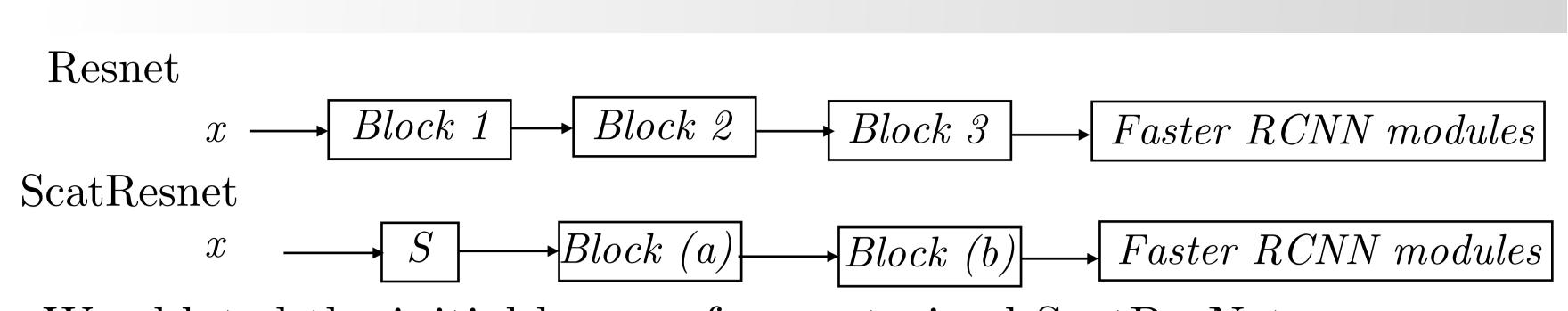
	# params	Top 5	Top 1
Order $1,2 + ScatResNet-10$	$12,\!8\mathrm{M}$	$88,\! 6$	68,7
$Order \ 1 + ScatResnet-10$	$11,\!4\mathrm{M}$	87,7	67,7
$Order \ 1 \ + \ WideScatResNet-50$	$107,\!2\mathrm{M}$	$92,\!8$	76,2
$Order \ 1 + ScatResNet-50$	$27,\!8M$	$92,\!0$	$74,\!5$
ResNet-50 $(pytorch)$	$25,\!6\mathrm{M}$	$92,\!9$	76,1
ResNet-101 (pytorch)	$45,\!4\mathrm{M}$	$93,\! 6$	77,4
WideResNet-50	68,9M	$94,\!0$	77,9

$$\|\tilde{x} - Sy\|$$

J = 4



 $\rightarrow Block (b) \rightarrow Block (c)$



• Our detection experiments demonstrate the spatial localisation of image details is preserved.

	mAP
Faster-RCNN Order $1 + ScatResNet-50$	73.3
Faster—RCNN ResNet-50 (ours)	70,5
Faster—RCNN ResNet-101 (ours)	72,5
Faster-RCNN VGG-16	70,2
\mathbf{COCO}	mAP
Faster-RCNN Order $1 + ScatResNet-50$	$32,\!2$
Faster—RCNN ResNet-50 (ours)	$31,\!0$
Faster—RCNN ResNet-101 (ours)	$34,\!5$
Faster-RCNN VGG-16	29,2

	mAP
Faster-RCNN Order $1 + ScatResNet-50$	73.3
Faster—RCNN ResNet-50 (ours)	70,5
Faster—RCNN ResNet-101 (ours)	$72,\!5$
Faster-RCNN VGG-16	70,2
\mathbf{COCO}	mAP
Faster-RCNN Order $1 + ScatResNet-50$	$32,\!2$
Faster—RCNN ResNet-50 (ours)	$31,\!0$
Faster—RCNN ResNet-101 (ours)	$34,\!5$
Faster-RCNN VGG-16	$29,\!2$
Detectron	$41,\!8$

Speed performances

Order 1 + ScatRes

CuPy

ResNet-50

ResNet-101

Conclusion

- ► Towards Image Understanding from Deep Compression Without Decoding, Torfason et al., ICLR 2018 ▶ Faster Neural Networks Straight from JPEG, Gueguen et al., ICLR workshop 2018

Detection performances

▶ We ablated the initial layers of a pre-trained ScatResNet.

Pascal VOC7

• Implemented via pytorch, we observe several savings:

re	Speed (64 images)	Max Im Single gpu	Speed (4 images)	Max Im (Coco)
esNet-50	$0,\!072$	175	$0,\!073$	9
0	$0,\!095$	120	$0,\!104$	7
)1	$0,\!158$	70	$0,\!182$	2

• Compress inputs and obtain a limited loss for supervised tasks • Allows several memory and computation savings without learning. • We applied no learning as the signals are natural images: can we learn better filters than wavelets for reducing a signal?

Related works