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Chapter 1

Introduction

The goal of these few notes is to present a (personal) overview of Deep Neural
Networks, through the lens of Statistical Signal Processing. Neural Networks
are difficult models to analyze because they have many parameters and are quite
non-linear, both in term of parametrization and embedding. Indeed, they typ-
ically consist of a cascade of linear layers followed by pointwise non-linearities,
whose output is a fed to a given loss (e.g., supervised classification loss). Deep
learning is a subfield of machine learning that aims at studying this type of
models. In general, the number of parameters is substantially larger than the
dimensionality of the input and each layer is trained in an end-to-end manner
via gradient descent.

In both unsupervised or supervised context, a strength of deep neural net-
works is their ability to adapt the parameters of a model to the specific bias
of a dataset, as well as the simplicity of performing a grid search on a large
amount of hyper-parameters. This makes their analysis even more difficult, as
there are currently no simple model of complex signals like images, sounds or
even a game of Go.

This type of black-box phenomenon is not specific to deep architectures and
is actually common to all high-dimensional models, without additional assump-
tions of structure (e.g., sparsity, linearity, ...). This is usually referred as the
curse of dimensionality which occurs when dimension d is large, and we can
illustrate it by the proposition below, where B(a, ρ) = {x, ‖x − a‖ ≤ ρ} ⊂ Rd,
and we show that covering the unit cube requires an exponential number of
ε−balls:

Proposition 1.1. If [0, 1]d ⊂ ∪n≤NB(an, ε), then N ≥ O(ε−d).

Proof. Let K = b 1
4εc and n = (n1, . . . , nd), and write f(n1, ..., nd) = n

K =
(n1

K , ...,
nd
K ). Then, we have: ∀n,∃i(n), ‖f(n) − ai(n)‖ ≤ ε. Furthermore, for

ñ 6= n, we have ‖ai(n) − ai(ñ)‖ ≥ 4ε − 2ε = 2ε which implies that i(ñ) 6= i(n).

Thus, we get N ≥ Kd = O(ε−d).

Remark 1.1. The previous proposition computed the covering number by re-
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lating the `2-norm to the `∞-norm. More generally, we can show that on a
d-dimensional normed vector space (E, ‖.‖) covering the the unit ball via ε-balls
requires at least O(ε−d) such balls. This is the notion of covering numbers [38],
and also related to the definition of Hausdorff dimension.

During these lectures, I would like to introduce several concepts from the
theory of Deep Learning through the scope of symmetries and linearization.
This document should not be technical but self-contained, and if not given, a
proof will be related to a precise reference.

1.1 Reminders about several Hilbert spaces

Let (H, 〈·, ·〉) be a Hilbert space with corresponding norm given for x ∈ H
by ‖x‖2 = 〈x, x〉. We call bounded operator (or simply operator) any linear
application T : H1 → H2 between two Hilbert spaces H1,H2, which satis-
fies supx∈H1

‖Tx‖ ≤ M‖x‖ for some M ≥ 0, which is equivalent to saying
T is continuous. For x ∈ H, we will write Tx the images of x by T and
the composition will be denoted by T1T2. We say it has a finite rank if the
image TH of T has finite dimension. T has an inverse if and only if there
exists T ′ s.t. TT ′ = T ′T = I. If T is bounded, its inverse is too. We write
Sp(T ) = {λ, T − λI has no inverse} ⊂ C, the spectrum of T . Many proofs of
those facts can be found in [32].

Definition 1.1. An operator T is a compact operator if TB(0, 1) is compact.

One simple caracterization of compact operators is as follows:

Proposition 1.2. An operator T is compact if and only if T is the limit of a
sequence of compact operators.

In particular, we have the following useful spectral theorem:

Proposition 1.3. If T is compact, then Sp(T ) = {λ1, ...} is at most countable

and H =
⊕⊥

n≥0 ker(T−λnI). Furthermore, the eigen-values can only accumulate
at 0 and ker(T − λnI) has finite dimension if λn 6= 0.

We refer to [31] for more elements about the theory of compact operators.
We further consider U(H) = {T, T ∗T = I} the unitary isometries of H, which
is a group for the composition.

Integral operators We will also use widely the notion of integral operator.
For a reference measure µ on a measurable space X , let:

L2(X ) = {f,
∫
X
|f |2(u) dµ(u) <∞}. (1.1)

This space is endowed with a Hilbert structure, and we introduce the notion of
integral operator : they are operators defined via a parametric integral over a
kernel :
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Definition 1.2. We call K : L2(X )→ L2(X ) an integral operator if there exists
a measurable function, called a kernel, k(u, t) s.t. ∀f ∈ L2(X ),

Kf =

∫
X
k(u, t)f(t) dt . (1.2)

The adjoint of K is given by:

K∗f =

∫
X
f(u)k̄(u, t) du. (1.3)

Thus, the following identity leads to:

∀f, g ∈ L2(X ), 〈Kf, g〉 = 〈f,K∗g〉 . (1.4)

It thus leads to:

∀f ∈ L2(X ), ‖Kf‖2 =

∫
u,v

w(u, t)f̄(u)f(t) dt du, (1.5)

where

w(u, t) =

∫
z

k̄(u, z)k(t, z) dz . (1.6)

Note the (expected) hermitian symmetry of the previous kernel: w̄(u, t) =
w(t, u). We also recall the following lemma.

Lemma 1.1 (Minkowski integral inequality). Given two measurable spaces
(X,µ), (Y, ν) and a measurable function f : X × Y → R we have the inequality:(∫

X

|
∫
Y

f(x, y)dν(y)|2dµ(x)

) 1
2

≤
∫
Y

(∫
X

|f(x, y)|2dµ(x)

) 1
2

dν(y) . (1.7)

and the following lemma allows to compute the norm of T via a bound on
its kernel:

Lemma 1.2 (Schur Lemma). Let K an integral operator with kernel k, then if

∀v,
∫
Rd
|k(u, v)| du ≤ C1 and ∀u,

∫
Rd
|k(u, v)| dv ≤ C2 , (1.8)

we have ‖K‖ ≤
√
C1C2.

Symmetries Following the approach of [27], fix for instance f : X → R. We
say that L : X → X is a symmetry of f if L is invertible and if:

f(Lx) = f(x),∀x ∈ X . (1.9)

We note that the set Sym(f) of symmetries L of f is a group for the composition.
We will give a more refined use of the symmetry group for translation invariance
in Chapter 2, in order to study invariant signal representations. Symmetries are
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potentially difficult to exhibit when there is no clear model of f . Note that if
we allow symmetries to permute to x, y, then they characterize the level sets of
f , as, by construction:

f−1({f(x)}) = {Lx,L ∈ Sym(f)}. (1.10)

In the case of signals obtain from a physical process and with additional as-
sumptions, symmetries are one of the major analysis tool (e.g., Gauge theory
[28]).

Linearization Another mechanism corresponds to the notion of linearization.
In particular, one has the following standard result:

Theorem 1.1 (Rademacher theorem). Let K ⊂ Rd an open set, if f : K → R is
locally Lipschitz, then f is almost everywhere differentiable, meaning. In other
words, that for almost all x, h ∈ K, there exists a (bounded) operator Lx, such
that

f(x+ h) = f(x) + Lxh+ o(‖h‖) . (1.11)

Note that locally Lipschitz on a compact implies globally Lipschitz on this
same compact.

In particular, we obtain a local linearization of f . This is of interest, as
linear structures are simpler to handle: in particular the case of a low rank Lx
allows to substantially reduce the ambient dimension.

1.2 Structure of this document

This document is divided into 5 chapters. Chapter 2 gives a framework to
analyze convolutions on groups and introduces the Scattering Transform [26].
Chapter 3 describes Graph Signal Processing techniques [19], and in particular
the analogy with a Laplacian: the Laplacian on the sphere is discussed in partic-
ular. Then, Chapter 4 proposes several approximation and estimation bounds,
following [3], that are easily obtained thanks to several tools that we will have
developed during the previous chapters. Chapter 5 discusses training neural
networks and a particular regime, the lazy regime [13]. Following the works of
Bartlett [6, 5] in the specific case of ReLU Neural Networks, we derive in Chap-
ter 6 several complexity bounds of Deep Neural Networks based on standard
complexity measures.
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Chapter 2

Group Invariance in Neural
Networks

In this section, we will be mainly studying how the formalism of groups can
shed light on Neural Network mechanisms. Consider a function ϕ : X → Y. We
say that it is equivariant to L : X → X if there exists L′ : Y → Y such that

∀x ∈ X , ϕ(Lx) = L′ϕ(x).

We say that it is invariant if L′ = I. If the spaces X and Y resemble each other
in a straight-forward way, e.g. Y = X or Y is several copies of X , then we also
say that L is covariant if it is not invariant.1

Remark that this property is stable under composition. We note that invari-
ance can be easily achieved from covariant operators and via single invariant
operator, as we have the following proposition:

Proposition 2.1. If ϕ1, ..., ϕJ−1 are covariant to L and ϕJ is invariant to L,
then Φ = ϕJ ◦ ... ◦ ϕ1 is invariant to L.

Proof. It follows from the definition, as:

ΦLx = ϕJ(LϕJ−1 ◦ ... ◦ ϕ1(x)) = Φx . (2.1)

Remark 2.1. One can notice the analogy with a Convolutional Neural Net-
work [23], that has typically this structure, where we can find L and L′ which
typically perform different numbers of copies of the same operation to move
every channel.

1In order to distinguish operators from standard functions, we might often omit the paren-
thesis for readability reasons.
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2.1 Reminder on Groups

At minimum, we consider here a group G with a metric d which is locally
compact, which means that each point admits a compact neighborhood. Let U
be a space on which G can act. For a function x ∈ L2(U), the action Lgx is
defined as u 7→ x(g−1u). Notably, if U = G, We denote Lp(G) = {f,

∫
G
|f |p <

∞}. We write Lgx(g′) , x(g−1g′) the left action of g ∈ G on L2(G), and we
consider left and right invariant measure µ, which means that for A measurable
and any g ∈ G, µ(ALg) = µ(LgA) = µ(A) (this also referred as unimodularity),
see [4] for more details.

2.1.1 Convolution along a Group

Definition 2.1. For a ∈ L1(G), b ∈ L1(U), we define the convolution along the
group G by:

a ? b(u) ,
∫
G

a(g)b(g−1u) dµ(g) . (2.2)

In particular, if U = G and for a, b ∈ L1(G), we define the convolution along
the group G by:

a ? b(g) ,
∫
G

a(g′)b(g′−1g) dµ(g′) . (2.3)

Furthermore, a ? b ∈ L1(G).

We recall also the norm inequalities for convolution, given by:

Lemma 2.1 (Young’s inequality for convolution). Let p, q, r ≥ 1 and a ∈
Lp(G,µ), b ∈ Lq(G,µ) s.t. 1

r + 1 = 1
q + 1

p , then:

‖a ? b‖r ≤ ‖a‖p‖b‖q .

Remark 2.2. If a ∈ L2(G) and b ∈ L1(G), then by Young’s inequality, we have
a ? b ∈ L2(G).

We will sometimes use the following lemma, which allows to obtain an “iden-
tity” element for the convolution:

Lemma 2.2 (Approximation to the identity). There exists a sequence δn ∈
L1(G), compactly supported,

∫
δndµ = 1, δn ≥ 0 such that δn ? a → a,∀a ∈

L2(G).
Alternatively, we also have δn ? a→ a,∀a ∈ L1(G).

Proof. For a neighborhood Ve of size εn arbitrary small around e, we consider
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δn(g) =
1Ve (g)
µ(Ve) . Then,

∫
δndµ = 1 and using the Lemma 1.1:∫

G

|δn ? a(g)− a(g)|2dµ(g) =

∫
G

|
∫
G

δn(g′)(a(g)− a(g′−1g))dµ(g′)|2dµ(g)

≤
∫
G

√∫
G

δn(g′)2|a(g)− a(g′−1g)|2dµ(g)dµ(g′)

=

∫
G

δn(g′)‖a− Lg′a‖dµ(g′)

Now since a ∈ L2, ‖a − Lg′a‖ < ε (for instance via density and dominated
convergence theorem) for g′ ∈ V ′e. We pick εn such that Ve ⊂ V ′e, and obtain
the conclusion.

Remark 2.3. We note that in the case where G = Rd with an additive law,

we can pick δ̂n(ω) = e−
‖ω‖2

2n2 , where the Fourier Transform is discussed in Sec.
2.1.2, which satisfies

∫
δndµ = 1 and a ? δn → a in L2(Rd) thanks to Parseval’s

theorem.

We then can characterize the operators that commute with the action of
translation: they correspond roughly to convolutions, as (and many variants of
this proposition can be obtained, in weaker sens):

Proposition 2.2. Let W : L1(G) → L1(G), be a continuous operator. Then
one has:

1. ∀g,LgW = WLg ,

2. ∃f ∈ L1(G) : Wδn → f ∈ L1 ,

if and only if ∃f ∈ L1(G) : ∀x ∈ L1(G),Wx = x ? f .

Proof. Convolutions clearly satisfy (2). For the other direction, note that, by
linearity and continuity, for x ∈ L1(G), we get:

W (x ? δn) = W

(∫
G

x(g′)Lg′δndµ(g′)

)
(2.4)

=

∫
G

x(g′)WLg′δndµ(g′) (2.5)

=

∫
G

x(g′)Lg′Wδndµ(g′) (2.6)

= x ?Wδn . (2.7)

Then, from Young’s inequality, we get:

‖x ?Wδn − x ? f‖1 ≤ ‖x‖1‖Wδn − f‖1 (2.8)

leading to the conclusion.
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Remark 2.4. Those concepts can be extended to L1 and L2 via distributions
and duality in C0(G), see e.g. [20, 11].

Remark 2.5. Note an application to this Lemma to signals L2(Rd)×Λ, where
the translation is given by:

∀λ ∈ Λ,Lax(u, λ) , x(u− a, λ) . (2.9)

This can be extended to standard Convolutional linear layers for Neural Net-
works. If W : L2(Rd) × Λ → L2(Rd) × Λ′ and WLa = LaW , the previous
Lemma gives the existence of kλ,λ′ s.t. Wx = {x ?

∑
λ∈Λ kλ,λ′}λ′∈Λ′ .

2.1.2 Fourier analysis on groups

In this subsection, we develop some tools that allow to characterize and better
manipulate the convolution operators on a group. To do so, we consider the
action of G on the isometries of L2(G), which are called (unitary) representation.
Non-unitary representation is a wider theory, yet this is beyond the scope of of
this class. Ideally, our objective is to decompose L2(G) in subspaces which will
be stable by convolutional operators. In the following, all representations will
be unitary.

Definition 2.2. Let H be a Hilbert space and a group G. We call a unitary
representation any continuous group morphism ρ : G→ U(H).

We only consider groups for which such a representation exists, and [18]
shows its existence for compact groups. We will be mainly interested in:

G→ U(L2(G))

g → Lg ,
(2.10)

where Lg : L2(G) → L2(G) is the translation of a signal by g. Note that
the direct sum ρ1 ⊕ ρ2 : G → U(H1 ⊕ H2) of two representations ρ1 : G →
U(H1), ρ2 : G→ U(H2) is itself a representation. Note that a representation on
H induces canonically a representation on a subspace of H′ ⊂ H, by restriction
of ρ(g)|H′ . The group quotient of representations is also a representation, yet
we do not introduce this notion because we will not use it.

Since Lg commutes with the convolutions, analyzing the invariant subspaces
of a unitary representation allows to obtain the invariant subspaces of a convo-
lution: those spaces are linked to a notion of frequencies. Let us describe them
further.

Definition 2.3. A closed subspace F ⊂ H is invariant w.r.t. ρ, if:

∀g, ρ(g)F ⊂ F . (2.11)

Proposition 2.3. Assume ρ is a unitary representation. Then, F is an invari-
ant subspace of ρ if and only if F⊥ is an invariant subspace of ρ.
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Proof. Indeed, for g ∈ G, if F is stable by ρ(g), then, as ρ(g) is adjoint, then
F⊥ is stable by ρ(g). This is true for all g ∈ G, F⊥ is invariant.

For K ⊂ H an invariant subspace of ρ, we write ∀k ∈ K, ρ|K(g)k = ρ(g)k the
restriction of ρ(g) to K. We will also need:

Definition 2.4 (Irreducible representation). A representation ρ : G → U(H)
is irreducible if its only invariant subspaces are H and {0}.
A representation ρ is said to be completely reducible, if H =

⊕⊥
n∈NHn and ρ|Hn

is irreducible for all n.

Proposition 2.4 (Irreducible representation in finite dimension). If ρ is a finite
dimensional representation, then ρ is completely reducible.

Proof. The proof can be obtained by induction using Prop. 2.3.

This applies in particular on representations G → Un, the group of the
unitary matrix on Cn, and for instance, if G = R, this leads to the concept of
one parameter group of GLn(C), generated by h ∈ Mn(C), acting on x ∈ Cn
via

t→ ethx . (2.12)

If eth is unitary, then it is a normal operator and its spectrum are elements of
modulus 1: h has its spectrum in jC and thus h∗ = −h.

Representations are of high interest when studying convolutions, because if
Wx = x ? ψ, ψ ∈ L1(G) and ρ is a representation that acts on U(L2(G)) via
translation as in Eq. (2.10), we note that a representation and a convolution
commutes:

∀g, ρ(g)W = Wρ(g) . (2.13)

Consequently, if F is a characteristic space of W (which is stable by W ),
then it is stable by ρ(g). Thus, we can study convolutions on potentially
smaller subspaces. An ideal setting is of course when those spaces are of
dimension 1: they are then the eigen-spaces of W . We now describe those
subspaces for various type of groups.

The Euclidean case, G = Rn

We consider the standard Fourier Transform F : L2(Rn)→ L2(Rn), defined by:

Fx(ω) ,
∫
Rn
x(u)e−jω

Tu du . (2.14)

We also write a character (which is a complex morphism G→ C):

χω(u) , ejω
Tu . (2.15)

Note that χω 6∈ L2(Rn). It is well known that the Fourier Transform is an
isometry of L2(Rn) [35]. We observe that, for all a ∈ Rn, Fourier transforms
the translation into a phase multiplication, as:

FLax(ω) = e−ja
TωFx(ω) = χaFx(ω). (2.16)

11



In the following, we write Eω = vect(χω). Note that a Fourier transform is
neither irreducible, neither contains an invariant subspace, as:

Proposition 2.5. ρ : a → (u → χa(u)x(u)) is a unitary representation, uni-
tarily equivalent to a → La, which is neither irreducible nor has any invariant
subspaces.

Proof. Following the Remark 2.8 (which is proven in [35]), as Rd is a commu-
tative group, such an invariant subspace has to be of dimension 1. Given that
dim L2(Rn) = ∞ and Rn is commutative, then, ρ is not irreducible. Assume
that one can obtain an invariant subspace F , then it is of dimension 1 by com-
mutativity, and ∃x ∈ L2(Rn), x 6= 0,∀a, x(ω)χa(ω) = λx(ω). Then, |λ| = 1,
and applying F∗ gives |x̂(u+ a)| = |x̂(u)|,∀a, thus |x̂| is constant which is not
in L2(Rn).

In order to get a representation which is an ”uncountable” sum of irreducible
representations, we would need to use the notion of direct integral, which can
be understood as a squared integrable section of ∪ωEω, that writes:

L2(Rn) =

∫
x

⊕
ω

Eω(x) .

For the sake of simplicity and concision, we do not introduce those tools here
but we refer the reader to [35].

Remark 2.6. It is possible to consider only signals with same compact support
(without losing in generality, [0, T ]d), and to use Shannon theorem to embed
them on the Torus: indeed, if so, to a compactly supported signal, we can asso-
ciate a T -periodic signal along each of the d dimensions. See [25].

The Abelian case, finite dimensional case.

In this subsection, we assume that dim H <∞. This assumption is due to Prop.
2.5, which shows unitary representations of infinite dimensional space can not be
always semi-simple. Again, our goal will be to decompose H in a sum of smaller
subspaces which are invariant. In the Abelian case (i.e., commutative case),
invariant subspaces of unitary representations are of dimension 1. In the finite
dimensional case (i.e., dim H < ∞), it implies that any unitary representation
is diagonalizable in an orthogonal basis. We remind the Schur lemma, which is
an important tool of representation theory:

Lemma 2.3 (Schur lemma). Let ρ : G → U(H) be a finite dimensional irre-
ducible representation. Consider L an operator of H such that:

∀g ∈ G, ρ(g)L = Lρ(g) , (2.17)

then, ∃λ ∈ C such that L = λI.

Proof. Here, let λ an eigenspace of L, dim ker(L − λI) > 0, which is stable by
ρ(g) for all g, thus L = λI.
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Remark 2.7. As noted in [36], if we allow dim H = ∞, we will get that
L = λW,W ∈ U(H).

Proposition 2.6. Assume again ρ is finite dimensional. If G is commutative
and ρ : G→ U(H) is an unitary irreducible representation, then dim H ≤ 1.

Proof. Indeed, if dim H > 0, then, let g′ ∈ G then ∀g, ρ(g′)ρ(g) = ρ(g)ρ(g′).
From the Lemma above, ρ(g′) = λg′I. Then, clearly every subspace of dimension
larger than 1 is stable by ρ(g) for any g, thus dim H = 1.

We can now conclude:

Proposition 2.7. Assume every invariant subspace of ρ : G → U(H) is finite
dimensional and that G is commutative, then H =

⊕
n∈NHn, where Hn is of

dimension 1.

Proof. This a direct conclusion of Prop. 2.6 and Prop. 2.4.

Remark 2.8. In infinite dimension, the existence of invariant subspaces is not
guarantee, however, we have the following: let F an invariant and irreducible
subspace of a representation ρ : G → U(H) (without any assumptions on the
dimension of H) over an abelian group G. Then, dim F = 1. The proof requires
the Spectral theorem for self-adjoint operators.

Proof. If we fix g0 ∈ G, then F is stable by ρ(g0) and F⊥ is stable by ρ(g0).

Example 2.1. Consider S1 = [0, 2π]. Then, for any ε > 0, it is easy to build
a cyclic sub-group G such that d(S1, G) < ε, as such a sub-group is isomorph
to Z/nZ. Note that this construction is not true anymore for Sn, n ≥ 2 []:
there exists no finite sub-groups that approximate the sphere with precision ε.
Otherwise, it is possible to note that any f ∈ L2(S1) can be written:

f(θ) =
∑
n

cne
inθ . (2.18)

and in this case we have the invariant (irreducible) subspaces Hn = Vect(θ →
einθ).

The compact case

Now, we will briefly discuss the case of compact groups. In particular, this
englobles finite groups, commutative or not, and the case of compact groups.

Theorem 2.1 (Peter-Weyl theorem). Let G be a compact group and ρ : G →
U(H) is a unitary representation, then H =

⊕
n>0Hn, where each Hn is a finite

dimensional irreducible subspace of ρ.

Proof. Here, the difficult part is to show the finite dimensional aspect. Fix
‖w‖ = 1 and:

Th =

∫
G

〈ρ(g)w, h〉ρ(g)w dµ(g) (2.19)

13



Then, T ∗ = T (by unimodularity), ρ(g) and T commute for all g (by con-
struction), ∀h, 〈h, Th〉 ≥ 0. The difficult part is to show that T is compact, and
for this, we will use this Lemma:

Lemma 2.4. For δ > 0, there there exists g1, ..., gn s.t. G is a disjoint union
of Si, gi ∈ Si and d(gi, g) < δ, ∀g ∈ Si.

Proof. By compacity, consider a finite covering K1, ...,Kn of diameter at most
ε, and we consider Si = Ki\ ∪j≤i Kj .

Now, we fix h ∈ H, ‖h‖ ≤ 1, and ε > 0. Then, ρ is continuous on a G, thus
ρ is unformly continuous on G, thus ‖ρ(g)− ρ(g′)‖ ≤ ε if d(g, g′) ≤ δ. Then, we
have:

‖
∑
i≤n

µ(Si)〈ρ(gi)w, h〉ρ(gi)w − Th‖

= ‖
∑
i≤n

∫
G

1g∈Si

(
〈ρ(g)w, h〉ρ(g)w − 〈ρ(gi)w, h〉ρ(gi)w

)
dµ(g)‖ .

Now, we note that:

‖〈ρ(g)w, h〉ρ(g)w − 〈ρ(gi)w, h〉ρ(gi)w‖
≤ |〈ρ(g)w − ρ(gi)w, h〉|‖ρ(g)w‖+ |〈ρ(gi)w, h〉|‖ρ(g)w − ρ(gi)w‖
≤ 2ε

Observe then that h→
∑
i≤n µ(Si)〈ρ(gi)w, h〉ρ(gi)w is of finite rank. Thus,

T̃ is compact as a limit of finite rank operator. Then, if Th = 0, then 〈h, Th〉 =
0,∀i ≤ k and

∫
G
|〈ρ(g)w, h〉|2 = 0, thus 〈ρ(g)w, h〉 = 0 (by continuity), thus

〈w, h〉 = 0. Consequently, if {wn}n∈N is a Hilbert basis, set T =
∑
n∈N

1
n2Tn,

where Tn =
∫
G
〈ρ(g)wn, h〉ρ(g)wn dµ(g). As a limit of compact operators, this

operator is compact. Furthermore, Th = 0 by positivity implies that ∀n, Tnh =
0 and thus 〈wn, h〉 = 0. Thus, h = 0, by definition of a Hilbert basis.

Now to conclude, we observe that the characteristic subspaces (of finite
dimension) of T previously exhibited are stable by ρ(g) for all g. Thus, they
contain the irreducible subspaces of ρ(g), and 0 is not an eigen value: we have
the conclusion.

Example 2.2. Consider SO3(R), and we consider ρ : SO3(R) → L2(S2), the
representation of rotation on the sphere. For such groups, we will see in the next
chapter that any L2(S2) =

⊕
n≥0Hdn where Hdn is the homogeneous harmonic

polynomials of degree d, and it can be shown that those subspaces are irreducible
[1].
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Product and semi-direct products: an example, the roto-translation

Via ρ((g, g′)) = (ρ(g), ρ(g′)), it is clear that the representations ρ1 : G→ U and
ρ2 : G′ → U ′ induce some representations G×G′ on U×U ′. We remind here the
notion of semi-product of group. Let G,G′ two subgroups of a same group H,
we say that G×G′ has a semi-direct product structure (and we write GnG′)
if it can be seen as a subgroup of H and that G′ acts by conjugation on G via
the inner operation:

∀g1, g2 ∈ G, g′1, g′2 ∈ G′(g1, g
′
1)(g2, g

′
2) = (g1(g′1g2g

′−1
1 ), g′1g

′
2) . (2.20)

This law is in general not commutative. In this section, we will mainly focus on
the group of roto-translation (or rigid-motion), given by SL(E) = SO2 n R2,
where we have, for g = (u, θ) = Lurθ, g′ = (v, ϕ) = Lvrϕ:

g.g′ = LurθLvrϕ = LurθLvr−θrθrϕ = (u+ rθv, θ + ϕ) . (2.21)

(because by conjugation, rθLvr−θ = Lrθv). Then, we note there that for x ∈
L2(SL(E)), defining the separable Fourier transform:

F̃x(ω, n) =

∫
[0,2π]

∫
R2

x(u, θ)e−iω
Tu−inθ dudθ , (2.22)

and we see that F̃Lg = LgF̃ commutes with the action of SL(E). Now, we also
have:

x(u, θ) =
∑
n∈Z

( ∫
[0,2π]

x(u, θ′)e−inθ
′
dθ′
)
einθ (2.23)

=
∑
n∈Z

∫
R2

F̃x(ω, n)eiω
Tu+inθ dω . (2.24)

Applying g′ = (u′, θ′) on x leads to:

Lg′x(u, θ) =
∑
n∈Z

∫
R2

F̃x(ω, n)eiω
T rθ′u−iω

Tu′+inθ−inθ′ dω (2.25)

=
∑
n∈Z

∫ +∞

0

∫
v∈S1

F̃x(ρv, nθ)e
iρvT rθ′u−iρv

Tu′+inθ−inθ′ρ dρdv .

(2.26)

We note that the right termHρ,n = {(u, θ)→ eiρv
Tu+inθ, v ∈ S1} is an invariant

subspace by the action of SL(E). As noted in Sec. 2.1.2, we would need the
concept of section to formalize better this concept, and we leave those technical
details to the reader and refer him to [35].
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2.1.3 Invariance along Rn

Linear invariance

In this subsection, we will focus on linear invariance in Rn.

Proposition 2.8. A continuous linear operator A : L1(Rn) → R is invariant
to the group of translations on Rn if and only if ∃λ,Ax = λ

∫
x.

Proof. From Lemma 2.2, let δn ≥ 0,
∫
δn = 1 approximating the Dirac distribu-

tion as in Lemma 2.2, then, by continuity:

A(δn ? x) = A(

∫
δn(.− u)x(u)du) (2.27)

=

∫
x(u)ALuδndu (2.28)

= Aδn

∫
x(u)du , (2.29)

and by continuity, the left term converges to Ax and it implies that Aδn con-
verges to some real value, as this is true for any x ∈ L1(Rn).

Non-linear demodulation via complex wavelets

We now discuss the demodulation effect linked to the complex envelop of an
analytic signal. Analytic signals are by definition the signals which have their
Fourier transform equal to 0 on half of the frequency space, i.e. ∃e : ∀ω, ωT e ≤
0, ψ̂(ω) = 0. It can be proved that they help to demodulate signals [29]. We
discuss a strategy to obtain an approximativaly analytic signal. Consider a well
localized low-pass filter θ, real, symmetric around 0 and with most of its energy
concentrated in this neighborhood. Write ψ̂(ω) = θ̂(ω−ω0) for some frequency
ω0. An informal computation shows that:

̂(Lax) ? ψ(ω) = eiω
T ax̂(ω)ψ̂(ω)

=
∑
n≥0

x̂(ω)
(iωTa)n

n!
ψ̂(ω)

≈
∑
n≥0

x̂(ω)
(iωT0 a)n

n!
ψ̂(ω)

= eiω
T
0 ax̂ ? ψ(ω) .

We note that we implicitly used the fact that the infinitesimal generator
of the translation is the derivation. Applying a modulus thus allows to obtain
smoother coefficients. This demodulation strategy can be actually quantified
through the following Lemma, that can be found in [26]:

Lemma 2.5 (Demodulation). Assume φ ≥ 0, then for any x ∈ L2(Rd) and
u ∈ Rd:

|x ? ψ| ? φ(u) ≥ sup
η∈Rd

|x ? ψ ? φ〈η|(u) , (2.30)
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where φ〈η(u) = eiu
T ηφ(u).

Proof. Indeed, for η ∈ Rd, we get for a given u:

|
∫∫

x(v)ψ(w − v)φ(u− w)ei(u−w)T η dwdv|

≤
∫
|
∫
x(v)ψ(w − v)dv|φ(u− w) dw .

Stability to deformations

Here, we introduce for τ ∈ C∞(Rd) the (linear) deformation operator for x ∈
L2(Rd):

Lτx(u) , x(u− τ(u)) . (2.31)

We explicitely write ∇τ the Jacobian of τ as in the standard litterature of
the Scattering Transform [26]. From the global inversion theorem, we see that
if ‖∇τ‖∞ = supu∈Rd ‖∇τ(u)‖ < 1, then, I − τ is invertible, the differential is
clearly invertible by standard consideration and the function is injective, thus τ
is a diffeomorphism. We say it is smooth if it is Ck for any k. In the following,
we will show that the stability to deformation is a delicate property to obtain.
We remind the global inversion theorem [30, Corollary 4.3]:

Theorem 2.2 (Global diffeomorphism). Let φ ∈ C∞(Rd), φ is a C∞-diffeomorphism
with φ(Rd) = Rd if and only if:

det(∇φ(u)) 6= 0,∀u ∈ Rd

and
lim

‖u‖→+∞
‖φ(u)‖ = +∞ .

Another useful version of this theorem:

Theorem 2.3 (Global diffeomorphism). Let Ω ⊂ Rd an openset, and φ a
smooth injective function. Then:

det(φ(u)) 6= 0

if and only if φ(Ω) is an openset and φ is a smooth diffeomorphism from Ω to
φ(Ω).

We in particular demonstrate that:

Lemma 2.6. Let τ ∈ C∞(Rd). Then, if ‖∇τ‖∞ , supu ‖∇τ(u)‖ < 1, then
I− τ is a smooth diffeomorphism. Furthermore:

(1− ‖∇τ‖∞)d ≤ det(I−∇τ(u)) ≤ (1 + ‖∇τ‖∞)d
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Proof. Fix u ∈ Rd and let λ, e an eigen-couple of I−∇τ(u). Then, e−∇τ(u).e =
λe and ∇τ(u).e = (1−λ)e. Thus, |1−λ| ≤ ‖∇τ(u)‖∞ and 0 < 1−‖∇τ(u)‖∞ ≤
λ ≤ 1 + ‖∇τ(u)‖∞ < 2. So we can lower and upper bound the determinant.
Next for u large enough:

‖u− τ(u)‖ ≥ ‖u‖ − ‖τ(u)‖ ≥ ‖u‖(1− ‖∇τ‖∞)− ‖τ(0)‖ .
Thus, I− τ is a diffeomorphism.

In particular, this implies that Lτ is bounded:

Corollary 2.1. If ‖∇τ‖∞ < 1, then (1+‖∇τ‖∞)−d ≤ ‖Lτ‖ ≤ (1−‖∇τ‖∞)−d.

Proof. Indeed, with u′ = u− τ(u)

‖Lτx‖2 =

∫
u

|x(u− τ(u))|2 du =

∫
u

1

det(I−∇τ)((I− τ)−1u′)
|x(u′)|2 du

In the following, we will be mainly interested in the action of small defor-
mations: we will measure the distance between the deformation field I− τ and
the identity via the following quantity:

sup
x
‖τ(x)‖+ sup

x
‖∇τ(x)‖+ sup

x,y
‖τ(x)− τ(y)‖ .

We will use the notation ‖∆τ‖∞ = supx,y ‖τ(x) − τ(y)‖, which is a quantity
small in practice.

2.2 Scattering Transform on Euclidean groups

2.2.1 Wavelet Transform on Rd

We now introduce the notion of mother wavelet: a wavelet family is obtained
by the dilation of a mother filter, and allows to obtain a dilated basis of L2(Rd).
In the case of signals such as sounds or images, they allow to obtain a sparse
representation with a predefined basis. The simplest example of wavelets is
given by the Haar wavelets. See [25] for an exaustive description of wavelets
en their properties. In the context of the Scattering Transform, we will discuss
rather different properties of wavelets, such as their stability to deformations.

Definition 2.5. ψ is a mother wavelet if, ψ ∈ L2(Rd) and
∫
Rd ψ(u) du = 0.

This function is systematically associated to a real-valued low-pass filter
φ ∈ L2(Rd). We now consider the rotation and dilation of a given mother
wavelet, leading to:

ψj,θ(u) ,
1

2jd
ψ(
r−θu

2j
) . (2.32)

Considering a family of such filters, we ask them to be close to a tight-frame
(see [25]), via:
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Definition 2.6. A discrete set of indexes Λ = {(j, θ)} ⊂ {1, ..., J}×SOd(R) is
said to be admissible for ε > 0 if:

1− ε ≤
∑
λ

|ψ̂λ(ω)|2 + |φ̂J(ω)|2 ≤ 1 (2.33)

Example 2.3. In the case of images, the wavelets ψj,θ will be parametrized by
a discrete angular parameter θ ∈ 2πZ/KZ, which implies that x ? ψj,θ will be
covariant to the action of rotations of 2πZ/KZ for some K ∈ N.

Proposition 2.9. Assume that:∑
λ

|ψ̂λ|2(ω) ≤ 1 (2.34)

is admissible, and, around 0, |ψ(ω)| = o(ω) then there exists ρ, continuous,

ρ ≥ 0, ρ ∈ L1, |ρ̂(ω)|2 ≤ 1−
∑
λ |ψ̂λ(ω)|2,∀ω, ρ̂(0) = 1.

Proof. We follow a similar proof to [39, Lemma 6.1], with a tiny modification to

adapt it to any dimension. We note that:
∑
λ |ψ̂λ(ω)|2 = o(‖ω‖2) (by dilation

and rotation). If ρ is positive, then it is the square of a positive function,
thus we can instead consider ρ2, which has Fourier transform equal to ρ̂ ? ρ̂.
If ρ̂ε(ρ, θ) = f(ρε ), f : R+ → R+ smooth with compact support in B(0, ε) and
a maximum in 0 equal to 1, then the support of ρ̂ε ? ρ̂ε is in B(0, 2ε) and the
maximum of this function is reached in 0 (by symmetry). Also by symmetry, it
is clear that this function is radial, and thus for some α > 0(because we have
a maximum in 0), ρ̂ε ? ρ̂ε = 1− α‖ω‖2 + o(‖ω‖2). By compacity, we thus have

|ρ̂ε ? ρ̂ε| ≤ 1 − β‖ω‖2 and
∑
λ |ψ̂λ(ω)|2 ≤ γ‖ω‖2. Dilating ρ̂ε ? ρ̂ε allows to

conclude as in [39].

This implies that it is always possible to find a low-pass filter (potentially
dilated by a factor J), which is positive and that allows to ”fill” the holes in
Fourier.

2.2.2 Scattering Transform on Rd

We consider an initial signal given by U0x , x. We then write VJx = {x?ψλ}λ∈Λ

and AJx , x ? φJ . In general, VJx corresponds to the high-frequencies of x
whereas AJx corresponds to the lower-frequencies, and is thus more invariant
to translations. If the wavelets of VJ are chosen analytic, then its (point-wise)
modulus |VJx| will tend to be smoother. In the following, we assume that
‖WJ‖ ≤ 1. The idea will be to cascade progressively several operators |Vj |
leading to Un as follow:

Un+1x = |VJUnx| . (2.35)

From this, we define the Scattering coefficients as follow:

Definition 2.7. For a signal x ∈ L2(Rd) scattering of order n is defined by:

SJnx = {AJx, ..., AJUnx} . (2.36)
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Theorem 2.4 (Non-expansivity). ∀x, y ∈ L2(Rd),∀n, ‖SJnx− SJny‖ ≤ ‖x− y‖.

Proof. We note that by 1−Lipschitz continuity of |.| and the approximative
isometry property of the wavelet transform:

‖AJUnx−AJUny‖2 + ‖Un+1x− Un+1y‖2 (2.37)

= ‖AJUnx−AJUnx‖2 + ‖|VJ |Unx− |VJ |Uny‖2 (2.38)

≤ ‖AJUnx−AJUny‖2 + ‖VJUnx− VJUny‖2 (2.39)

≤ ‖Unx− Uny‖2 (2.40)

(2.41)

Summing those inequality, we get:

‖SJnx− SJny‖2 ≤ ‖U0x− U0y‖2 − ‖Un+1x− Un+1y‖2 ≤ ‖x− y‖2 . (2.42)

Lemma 2.7. Assume that x ∈ L2(Rd) has a compact support in Fourier, i.e.,

x̂(ω) = 0,∀‖ω‖ > A. Also assume that ψ̂(ω) = 0 and that ψ̂ is continuous and
is ε-admissible as in Def. 2.6. Then:

lim
n
‖Unx‖ = 0 . (2.43)

Proof. See [39].

Theorem 2.5 (Energy preservation). For x ∈ L2(Rd), and ψ as in Lemma 2.7.
Assume first that x has a compact support in Fourier, we then have:

(1−O(ε))‖x‖ ≤ lim
n→∞

‖SJnx‖ ≤ ‖x‖ (2.44)

Furthermore, for x ∈ L2(Rd), if ε = 0 in Def. 2.6, then:

lim
n→∞

‖SJnx‖ = ‖x‖

Proof. The right inequality is proved with y = 0 from supra. For the left side,
we have:

(1− ε)‖Unx‖2 ≤ ‖AJUnx‖2 + ‖VJUnx‖2

= ‖AJUnx‖2 + ‖|VJ |Unx‖2

= ‖AJUnx‖2 + ‖Un+1x‖2

This leads again to:

‖x‖2 − ‖UN+1x‖2 − ε
∑
n≤N

‖Un‖2 ≤ ‖SJNx‖2 . (2.45)

From supra, we have the first conclusion. If ε = 0, we obtain the claim, by
density of functions with compact support combined with Prop. 2.4.
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We now focus on stability to deformations, which means here that the Scat-
tering Transform is Lipschitz with respect deformations.

Theorem 2.6 (Stability to deformation). Assume that ψ, φ are smooth with
ψ, φ and their derivatives having a fast decay. And assume also that ‖WJ‖ ≤ 1.
If
∫
ψ = 0, there exists C > 0, such that for any J ∈ N, we get:

‖SJnx− SJnLτx‖ ≤ n3/2C(‖∇τ‖∞ + ‖∆τ‖∞ + 2−J‖τ‖∞)‖x‖ (2.46)

Proof. For a fixed J , we will consider each order n independantly:

‖AJ |VJ |...|VJ |Lτ −AJ |VJ |...|VJ |‖ ≤ ‖AJ(Lτ − I)|VJ |...|VJ |‖+

n−1∑
m=0

‖AJ

m times︷ ︸︸ ︷
|VJ |...|VJ | Lτ

n−m times︷ ︸︸ ︷
|VJ |...|VJ | −AJ

m+1 times︷ ︸︸ ︷
|VJ |...|VJ | Lτ

n−m−1times︷ ︸︸ ︷
|VJ |...|VJ | ‖

≤ n‖[VJ ,Lτ ]‖+ ‖AJ −AJLτ‖

where the last inequality commes from the non-expansivity of the operators.
Next, we note that:

‖SJmx− SJmLτx‖2 =

m∑
n=1

‖AJ |VJ |...|VJ |Lτ −AJ |VJ |...|VJ |‖2 (2.47)

≤
m∑
n=1

(n‖[VJ ,Lτ ]‖+ ‖AJ −AJLτ‖)2 (2.48)

The next Lemma allow to upper bound this quantity.

Remark 2.9. This inequality is clearly suboptimal, in particular because it in-
volves the order n of the Scattering Transform. In fact, [26] shows the bound
can be independant of n but this is more technical.

In the following, we leverage the assumption that ‖WJ‖ ≤ 1, which can be
obtained via a renormalization of the mother wavelet.

Lemma 2.8 (Stability of a low-pass filter to deformations). Assume ∇φ and φ
are integrable. There is C > 0, such that for any J ∈ N, we get:

‖AJ −AJLτ‖ ≤ C(2−J‖τ‖∞ + ‖∇τ‖) (2.49)

Proof. For proving this result, we exhibit the kernel of the integral operator
AJ −AJLτ , which is given by:

AJx−AJLτx(u) =

∫
Rd
x(v)φJ(u− v)− x(v − τ(v))φ(u− v) dv (2.50)

=

∫
Rd
x(v − τ(v))φJ(u− v − τ(v)) det(I−∇τ(v))− x(v − τ(v))φ(u− v) dv .

(2.51)

= K1Lφx+K2Lφx (2.52)
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where we used v′ − τ(v′) = v for the left term of the second line and:

K1x =

∫
Rd

det(I−∇τ(v))(φJ(u− v − τ(v))− φJ(u− v)x(v) dv

and

K2x =

∫
Rd

(det(I−∇τ(v))− 1)φJ(u− v)x(v) dv .

Now, we will use a lot the Schur’s Lemma, with Lemma 2.6 and u′ = u−v−tτ(u)
:∫
Rd
|det(I−∇τ(v))φJ(u− v)− φ(u− τ(u)− v)| du ≤ 2d

∫
Rd
|
∫ 1

0

〈∇φJ(u− v − tτ(u)), τ(u)〉 dt| du

≤ 2d
∫
Rd

∫ 1

0

‖τ‖∞‖∇φJ(u)‖|det−1(I− t∇τ)((I− tτ)−1(u+ v)))| dudt ,

≤ ‖τ‖∞22d

∫
Rd
‖∇φJ(u)‖ du

Next, we again get:∫
Rd
|det(I−∇τ(v))||φJ(u− v)− φ(u− τ(u)− v)| dv ≤ 2d

∫
Rd
|
∫ 1

0

〈∇φJ(u− v + tτ(u))T , τ(v)〉 dt| dv

≤ 2d
∫
Rd
‖∇φJ(v)‖‖τ‖∞ dv .

Thus, by Schur Lemma, ‖K1‖ ≤ ‖τ‖∞23/2d‖∇φJ‖1. For the second kernel,∫
Rd |k2(u, v)| du ≤ d‖∇τ‖∞‖φJ‖1, and by Symmetry and Schur Lemma, ‖K2‖ ≤
d‖∇τ‖∞ Now, knowing that ‖∇φJ‖1 = 1

2J
‖∇φ‖1 and ‖φJ‖1 = ‖φ‖1, we can

now conclude.

Lemma 2.9 (Commutation of a wavelet transform with diffeomorphism). Let
ψ ∈ L2(Rd), and let ψj(u) = 1

2jd
ψ( u2j ) and assume that

∫
Rd ψ(u) du = 0 and that

ψ is C1, with ψ and its derivatives with a fast decay. Write VJx = {x?ψj}J≥j≥0.
Then, there exists a constant C such that for any J :

‖[VJ , Lτ ]‖ ≤ C
(
‖∇τ‖∞ + ‖∆τ‖∞

)
. (2.53)

Proof. First, note that:

‖[VJ , Lτ ]‖2 = ‖
J∑
j=0

[Kj , Lτ ]∗[Kj , Lτ ]‖ ,

where we write Kjx = x ? ψj for 0 ≤ j ≤ J . We begin with the following
technical Lemma:
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Lemma 2.10 (Technical). Let K̃j with kernels k̃j(u, v) = a(v)ψj(u − v) then
there is C > 0 which depends on ψ such that:

‖
∑
j

K̃∗j K̃j‖ ≤ ‖a‖2∞C .

Proof. First, we note that:

K̃jx(u) =

∫
v

a(v)x(v)ψj(u− v) dv = Kj(ax)(u)

Next, because ψ is C1 with fast decay, we can find c > 0 such that |ψ̂(ω)|2 ≤
c
‖ω‖2 . Indeed, ∇̂ψ is a bounded function, as ∇ψ is L1. At the same time,

because u → |ψ(u)|‖u‖ is integrable, ψ̂ is C1 and because ψ̂(0) = 0, we know

there is c′ > 0, |ψ̂(ω)|2 ≤ c′‖ω‖2 for ‖ω‖ ≤ 1. Thus, there is c̃, such that

|ψ̂|2(ω) ≤ c̃min(‖ω‖2, 1
‖ω‖2 ). Now, write r = ‖ω‖2. Either r ≥ 1, in which case:∑
j≥0

|ψ̂(2jω)|2 ≤ c̃
∑
j≥0

2−2j ≤ 2c̃ .

Either r < 1, in which case there is j0 ∈ N, 2−2j0−2 < r < 2−2j0 . But then:

∞∑
j=0

min(22jr,
1

r22j
) ≤

j0∑
j=0

22jr +

∞∑
j=j0+1

1

r22j
≤ 4

In both cases:
∀ω,

∑
j≥0

|ψ̂(2jω)|2 ≤ C

Now, we note that:

∑
j

‖K̃jx‖2 =
∑
j

‖Kj(ax)‖2 ≤ ‖a‖2∞
∑
j

‖Kjx‖2 = C‖a‖2∞‖x‖2 (2.54)

In particular, ‖
∑
j K̃jK̃j‖ ≤ C‖a‖2∞ .

We note that:

(LτKj −KjLτ )x(u) =

∫
v

ψj(u− v − τ(u))x(v)− x(v − τ(v))ψj(u− v) dv

(2.55)

=

∫
v

ψj(u− v′ + τ(v′)− τ(u))x(v′ − τ(v′))det(I−∇τ)(v′)dv′

(2.56)

−
∫
v

x(v − τ(v))ψj(u− v) dv (2.57)

(2.58)
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with v = (I− τ)(v′). We note that thus:

[Lτ , Vj ] = K̃jLτ

and we write:

K1
j x(u) =

∫
v

x(v)[ψj(u− v + τ(v)− τ(u))− ψj(u− v)]det(I−∇τ)(v) dv

and

K2
j x(u) =

∫
v

x(v)ψj(u− v)(det(I−∇τ)(v)− 1) dv

such that K̃j = K1
j +K2

j , with kernels k1
j , k

2
j . In this case,

‖[VJ , Lτ ]‖2 = ‖
∑
j

L∗τ K̃
∗
j K̃jLτ‖ (2.59)

≤ ‖Lτ‖2‖
∑
j

K̃∗j K̃j‖ (2.60)

= ‖Lτ‖2‖
∑
j

(K̃1,∗
j + K̃2,∗

j )(K̃1
j + K̃2

j )‖ (2.61)

≤ ‖Lτ‖2
(
‖
∑
j

K̃2,∗
j K2

j ‖+ 2
∑
j

‖K̃1
j ‖‖K̃2

j ‖+
∑
j

‖K̃1
j ‖2) (2.62)

At this stage, we write:

|k1
j (u, v)| = |

∫ 1

0

〈∇ψj(u− v + t(τ(v)− τ(u))), τ(v)− τ(u)〉 dt det(I−∇τ)(v)|

(2.63)

≤ 2d‖∆τ‖∞
∫ 1

0

‖∇ψj(u− v + t(τ(v)− τ(u)))‖ (2.64)

where we used that |det(I − ∇τ)(v)| ≤ 2d via Lemma 2.6. Next, if u′ = u −
tτ(u)− v + tτ(v), then:∫
u

|k1
j (u, v)| du ≤ 2d‖∆τ‖∞

∫
u′
‖∇ψj(u′)‖

1

det(I− t∇τ)((I− τ)−1(u′ + v − tτ(v)))
(2.65)

≤ 22d−J‖∆τ‖∞‖∇ψ‖1 (2.66)

where we used Lemma 2.6. By symmetry and Schur Lemma, ‖K1
j ‖ ≤ 22d−J‖∆τ‖∞‖∇ψ‖1.

Next k2
j writes:

k2
j (u, v) = ψj(u− v)a(v)

with a(v) = det(I−∇τ)(u)− 1. However, ‖a‖∞ ≤ max(1− (1−‖∇τ‖∞)d, (1 +
‖∇τ‖)d − 1)) ≤ d‖∇τ‖∞. Using the technical Lemma, this implies that:
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‖
∑
j

K̃2,∗
j K̃2

j ‖ ≤ d2C‖∇τ‖2∞

Next, it is clear that:

‖K̃2
j ‖2 ≤ ‖

∑
j

K̃2,∗
j K2,∗

j ‖

Furthermore, we have using Corollary 2.1:

‖Lτ‖ ≤ 2d

All combined, and summing over j, we get a constant C > 0 which depends
on d, ψ such that:

‖[VJ , Lτ ]‖ ≤ C
(
‖∇τ‖∞ + ‖∆τ‖∞

)
.

2.2.3 Roto-translation scattering

We now discuss how to obtain some invariance on a specific group, which is
non-commutative and not compact: the roto-translation group. First, observe
that thanks to the section above, we can define the convolution along SL(E).
Here, the first layer is given by a coordinate mapping of the Euclidean Scattering
Transform define in Sec. 2.2.2 on SL(E):

U1x[j, θ](u) , Ũ1x[j](u, θ) = |x ? ψ(u, θ)| (2.67)

Note that applying an operator along angles without non-linearity would simply
lead to an isotropic filter. This is the reason why x ? φJ(u) is invariant to
rotations, if φ is for instance an isotropic Gaussian filter. Instead, we consider
a mother filter Ψ ∈ L2(SL(E)) and we peform a convolution along SL(E) as
defined in Def. 2.1 leads to:

(x̃~ Ψ)(u, θ) =

∫
R2

∫
[0,2π]

Ψ(r−θ′(u− u′), θ − θ′)x̃(u′, θ′) (2.68)

We thus have a very natural formulations of our filters, via (assuming for now
the parameters haven’t been discretized):

Ψj2,θ2,k2(u, θ) = ψj2,θ2(u)ψ̆k2(θ) . (2.69)

In this case, we note that the convolution can be naturally casted as follow:

Ũ2x[λ2, λ1](u, θ) = |
∫
R2

∫
[0,2π]

ψj2,θ2+θ′(u− u′)ψ̆k2
(θ − θ′)Ũ1x[λ1](u′, θ′)| .

(2.70)

25



In order to get invariant coefficients over the roto-translation groups, we can
average them along the orbit of the group, using a simple separable averaging,
where φJ , φk are two averaging along spatial and angular variabilities:

ΦJ,K(u, θ) = φJ(u)φK(θ) , (2.71)

and we define:

SJ,K0 x = x ? φJ

SJ,K1 x = Ũ1x~ ΦJ,K

SJ,K2 x = Ũ2x[λ2, λ1] ~ ΦJ,K .

This is the invariant Scattering on SL(E) as introduced by [33].
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Chapter 3

Graphs Neural Networks
and Manifold data

In this chapter, we propose to analyze Graph Neural Networks with Signal
Processing tools, and in the particular setting for which the graph is sampled
from an underlying manifold structure. We will study particularly the example
of the Laplacian on the sphere Sd−1.

3.1 The Laplacian and Graph Signal Processing

3.1.1 Basics on graphs

Definition 3.1. The adjacency matrix A of an undirected graph G ⊂ {1, ..., n}
and E ⊂ G × G is any symmetric matrix which satisfies:

Ai,j ≥ 0 , (3.1)

with (i, j) ∈ E if and only if Ai,j > 0. Furthermore, we assume that:∑
i

Ai,j = 1 . (3.2)

The Laplacian is given by:
∆G = I−A . (3.3)

Furthermore, we write L2(G) the set of integrable signals G → R.

Remark 3.1. In general the adjacency matrix is not normalized, and there are
many variants of possible normalization, which all have a theoretical or practical
fundation. For instance, if Di,i =

∑
j Ai,j is the diagonal weight matrix, [22]

writes it I−D−1/2AD−1/2 and sometimes the Laplacian is simply D−1(I−A) [].

Proposition 3.1. If G is a cycle, then ∆G is a first order approximation of
−∆R, the Laplacian on S1 and its eigen-basis is given by the DCT.
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Proof. Indeed, we note that the Laplacian is given by (with a circular symme-
try), for 0 ≤ n ≤ N − 1:

∆Gx[n] = x[n]− x[n+ 1] + x[n− 1]

2
(3.4)

Now, introducing the Toeplitz matrix Jen = en+1, we know the eigenvectors are
given by [eiωNm]m, with ωn = 2π

N and summing the two conjugate eigenvectors
lead to [cos(ωNm)]m.

Proposition 3.2 (Perron-Frobenius). Let λ1 ≤ ... ≤ λn the spectrum of A,
then λn = 1 and |λk| ≤ 1. Also, λn−1 < 1 if and only if the graph has a single
connected component.

Proof. Due to the normalization, if (λ, e) is an eigen-couple, |λe| = |Ae| ≤
A|e| thus taking the `∞-norm, |λ| ≤ 1 and it’s clear that λn = 1 (due to the
normalization). If the graph has two connected components (or more), then A
is equivalent to a block-diagonal matrix and has thus 2 eigen-vectors related
to 1. Reciprocally, assume one instant that Ai,j > 0,∀i, j. If the graph has a
single connected component let e the eigenvector of λn−1 and assume one instant
that λn−1 = 1 and let i0 s.t. |ei0 | = maxi |ei|. Then, |ei0 | = |

∑
j Ai0,jej | ≤∑

j Ai0,j |ej | ≤
∑
j Ai0,j |ei0 | = |ei0 |, which implies that |ej | = |ei0 | for any j,

and have the same sign: they are equal. Note that it is possible to assume that
Ai,j > 0, because Ak will be so for some k, as its entries are non 0 iff there exists
a path of length k and we assumed here the graph has a single component.

Here, λn−1 is often called the spectral gap of the graph [] and is a geomet-
rical quantity that describes the connectivity of a given graph (in particular,
how far the behavior of the graph is from a two connected components graph).
This can be noticed as a diffusion is simply controlled by:

‖Akx− (1, ..., 1)T ‖ ≤ λkn−1‖x− (1, ..., 1)T ‖ . (3.5)

and the higher is the connectivity (and thus smaller is λn−1), the faster is the
convergence.

3.1.2 The Laplacian on a manifold

In this section, we write ∆Rd or only ∆ if no confusion is possible with other
variants of Laplacians.

Theorem 3.1 (Divergence Theorem). Let u, v ∈ C∞(Rd), then for any open
set Ω ⊂ Rd s.t. the oriented boundary ∂Ω is regular or empty, we get the first
Green identity: ∫

Ω

u∆v +∇u.∇vdλ =

∫
∂Ω

u(∇v.n) dσ (3.6)

where n is a normal vector pointed outward, σ is the desintegration of λ on ∂Ω.
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This also leads, under the same assumptions to the second Green identity:∫
Ω

u∆v − v∆u dλ =

∫
∂Ω

u(∇v.n)− v(∇u.n) dσ . (3.7)

Let (M, µ) be a compact sub-manifold of Rd with measure µ, with no bound-
ary (ie ∂M = ∅, meaning locally each neighborhood is diffeomorph to an Eu-
clidean neighrborhood). It implies that there exists for ∀x ∈M a scalar product
〈., .〉TMx

linked to the tangent space TMx at x.

Definition 3.2 (Gradient). For any smooth f : M → R, we define ∇Mf as
the unique 1-form such that df(x)y = 〈∇Mf(x), y〉TMx,∀x ∈M, y ∈ TMx.

The Laplacian ∆M : L2(M) → L2(M) on M is defined formally as the
unique operator satisfying, for f, g smooth:∫

M
f(x)∆Mg(x)dµ(x) = −

∫
M
〈∇Mf(x),∇Mg(x)〉TMxdµ(x) . (3.8)

(to do so, one can extend the notion of Laplacian by density to the C∞

functions onM, yet this is difficult) Its existence or unicity is beyond the scope
of this class. Sometimes, the Laplacian can be computed in a simpler manneer.
Let us consider f ◦ i where i : Rd →M is a smooth and surjective application,
such that a subset of Rd is isometrical to M (meaning that x → di(x) is a
unitary transform along this subset). Since d(f ◦ i) = diT∇Mf and from the
Eq. (3.8), we get:

∆Mf(i(x)) = ∆Rd(f ◦ i)(x) . (3.9)

Furthermore, as an operator of L2(M), we obtain:

Proposition 3.3. −∆M is a non-positive symmetric operator.

Proof. It is clear from the Eq. (3.8), with f = g.

If M is compact, then ∆M is a compact operator (this can be proved via
Rellich’s Lemma [37] and this is beyond the scope of the class) and consequently,
we can find an orthonormal basis s.t.:

∆Mei = −λiei , (3.10)

L2(M) =
⊕

i>0 Vect(ei) and ∀i, λi ≥ 0.

Remark 3.2. It is possible to obtain a close form of the Laplacian via Christof-
fel symbols yet this is clearly beyond the scope of this lecture.

If we let Kσ(x, y) = e−
‖x−y‖2

σ2 a Gaussian kernel with bandwidth σ, and if we
consider the graph Laplacian s.t. Ai,j = Kσ(xi, xj) then with the appropriate
normalization, we get for a smooth f :

∆Gf(x) =

∑N
i=1Kσ(xi, x)f(xj)∑N

i=1Kσ(xi, x)
− f(x) . (3.11)
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In this case, [34, 7] show that as σ → 0, N →∞, then:

∆Gf(x)→ ∆Mf(x) . (3.12)

This last observation justifies how we can handle non-Euclidean data with a
Manifold structure via graph method. In fact, it is possible to define a notion
of convolution, via:

Definition 3.3 (Convolution on M). The convolution of two signals f ∈
L2(M) and g ∈ L2(N) is given by:

f ? g =
∑
i

〈f, ei〉g[i]ei . (3.13)

By the Bessel inequality, the previous quantity is well defined. Those tools
are the basis of many works that perform signal processing on manifolds or
graphs, and we refer the reader to [12] for a more complete review.

3.1.3 Wavelet transforms on Graphs

Following the construction of [14, 19], we will construct filters ψj(m) s.t. if
Wx = {x ? ψj}, then W should be a frame:

Definition 3.4. We say that {ψj}j ⊂ L2(G) is a frame if:

A‖x‖ ≤ ‖Wx‖ ≤ B‖x‖ . (3.14)

The frame is unitary if A = B = 1.

Diffusion wavelets Similarly to a setting in the Euclidean grid, we can in-
troduce wavelets which are a difference of two dilated low-pass filter (Difference
of Gaussians [24])

ψj = Aj+1 −Aj (3.15)

and
φ = I +A . (3.16)

Then, note:

‖Wx‖2 = ‖φx‖2 +
∑
j≥0

‖ψjx‖2 = xT
(
(I +A)2 + (I−A)2

∑
j≥0

A2j
)
x , (3.17)

Now, having in mind that 0 4 (I−A)2 4 I−A2, we can chose an appropriate
B, and for the left term A can be chosen non-negative.
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Extrapolating real wavelets on graphs Following [19], a standard ap-
proach is to consider a real valued wavelet transform {ψ̃j}j ⊂ L2(R), and we

introduce ψj =
∑
i≥0

ˆ̃
ψj(λi)ei. If the wavelet transform is admissible, then:

‖Wx‖2 =
∑
i

∑
j

| ˆ̃ψj(λi)|2〈x, ei〉2 (3.18)

and given that there is an ε > 0 s.t.:

1− ε ≤
∑
j

| ˆ̃ψj(λi)|2 ≤ 1 , (3.19)

we obtain the fact that this is also a frame.

Remark 3.3. Via those constructions, it is possible to define a notion of Scat-
tering Transform, see [16, 17].

3.1.4 Graph Convolutional Networks

We shortly discuss Spectral GCNs as introduced by [22].

Definition 3.5 (Convolution on a graph). A GCN is given by:

Xj+1 = ρ(I +A)XjWj , (3.20)

where Xj is of size n × Pj where n is the number of nodes of A and Pj is the
number of features, and Wj is learned through supervision and ρ is a pointwise
non-linearity.

Thanks to the formalism we developed above, we can understand now I +A
as a smoothing operator, which might not be desirable in many applications,
because it oversmoothes a signal.

3.2 A cryptic example: Sd−1

3.2.1 Laplacian on Sd−1

We now go through an important example, both from the perspective of applica-
tions and theoretical insights: the d− 1 dimensional sphere. For f ∈ L2(Sd−1),
we write ∆Sd−1f the Laplacian on the d−1 dimensional unit sphere. We always
assume d ≥ 3.

Proposition 3.4. Let f : Rd → R. Then:

∆Rdf(
x

‖x‖
) = ∆Sd−1f(

x

‖x‖
). (3.21)
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Proof. From the remark above, it’s enough to show that a restriction of i(x) =
x
‖x‖ , i : Rd → Sd−1 is an isometry on Sd. Straightforward computations show

that if ‖x‖ = 1, then x+ε
‖x+ε‖ = x + ε − x〈x, ε〉 + o(ε): the differential is an

orthogonal projection on the orthogonal of x and consequently, i restricted to
x⊥ is locally a diffeomorphism on Sd−1 as di(x).ε = ε, ∀ε ⊥ x. We have thus
the conclusion using Eq. (3.9).

Remark 3.4. There is a more general ”trick” linked to the notion of normal
tangent, that can be embedded isometrically, see [].

We note that the related (complex) scalar product (Sd−1, 〈., .〉) is given by:

〈f, g〉Sd−1 =

∫
Sd−1

f̄(x)g(x) dσ(x) (3.22)

=
1

Λd

∫ π

0

...

∫ π

0

∫ 2π

0

f̄(ϕ)g(ϕ) sind−2(ϕ1)... sin1(ϕd−1)dϕ1...dϕd−1 ,

(3.23)

where Λd = 2π
d+1

2

Γ( d+1
2 )

and ϕ = (ϕ1, ..., ϕd−1). It is adjusted such that ‖1‖Sd−1 = 1.

Definition 3.6 (Harmonic homogeneous polynomials). A homogeneous poly-
nomial of degree n on Rd is a polynomial Y that satifies:

∀x ∈ Rd,∀λ ∈ R, Y (λx) = λnY (x) . (3.24)

We say that a homogeneous polynomial is harmonic, if in addition:

∆Y = 0 . (3.25)

and we write Hdn ⊂ R[X1, ..., Xd] the sub-vector space of harmonic and homoge-
nous polynomials of degree n.

Lemma 3.1 (Dimension of harmonic homogeneous polynomials). We have

dim Hdn = (2n+ d− 2) (n+d−3)!
n!(d−2)! .

Proof. See [2, Prop 5.8, p.78].

Proposition 3.5 (Harmonic functions on the unit ball). If P is harmonic on
B(0, 1), then for any 0 ≤ r < 1 and x ∈ Sd−1:

P (rx) =

∫
Sd−1

P (y)
1− r2

‖rx− y‖d
dσ(y) (3.26)

Proof. This is here tricky. First, we note that if v(x) = 1
‖x‖d , then∇v = − dx

‖x‖d+2

and ∆v = 2d
‖x‖d+2 . We consider:

u(x, y) =
1

‖rx− y‖d−2
− 1

‖ry − x‖d−2
. (3.27)

We note that thus: ∆xu(x, y) = −∆yu(x, y) by symmetry.
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Lemma 3.2 (Symmetry Lemma). If x, y ∈ Sd−1, then u(x, y) = 0.

Now, we apply Theorem 3.1 on Bε , B(0, 1)\B(rx, ε) (and writing Sd−1(x, ρ)
the sphere centered in x of radius ρ) for ε small enough, and despite u having a
singularity in rx, we get, taking the normal n w.r.t. the y variable:∫
Bε

∆yu(x, y)P (y) dλ(y)−
∫
Bε

∆P (y)u(x, y), dλ(y) =

∫
Sd−1

P (y)
∂u

∂n
(x, y) dσ(y)−

∫
Sd−1

u(x, y)
∂P

∂n
(y) dσ(y)

−
∫
Sd−1(rx,ε)

P (y)
∂u

∂n
(x, y) dσε(y) +

∫
Sd−1(rx,ε)

u(x, y)
∂P

∂n
(y) dσε(y)

Now, note that since all the functions are smooth and P is harmonic:∫
Bε

∆yu(x, y)P (y) dλ(y) = −
∫
Bε

∆xu(x, y)P (y) dλ(y)

= −∆x

∫
Bε
u(x, y)P (y) dλ(y)

= −∆x

∫
Bε

( 1

‖rx− y‖d−2
− 1

‖x− ry‖d−2

)
P (y) dλ(y)

= −∆x

∫
LrxBε

1

‖y‖d−2
P (rx− y) dλ(y) + ∆x

∫
L x
r
Bε

1

rd−2‖y‖d−2
P (
x

r
− y) dλ(y)

=

∫
LrxBε

1

‖y‖d−2
∆xP (rx− y)−

∫
L x
r
Bε

1

rd‖y‖d−2
∆xP (

x

r
− y) dλ(y)

= 0 .

Next:∫
Sd−1

P (y)
∂u

∂n
(x, y) dσ(y) =

∫
Sd−1

P (y)d
( (r(ry − x))

‖rx− y‖d
− ((y − rx))

‖rx− y‖d
)
. ydσ(y)

=

∫
Sd−1

P (y)d
r2 − 1

‖rx− y‖d
dσ(y) .

Then, because the normal vector is y−rx
ε on Sd−1(rx, ε) and the right term is

continuous:∫
Sd−1(rx,ε)

P (y)
∂u

∂n
(x, y) dσε(y) =

∫
‖rx−y‖=ε

P (y)
1

εd
(dε) dσε(y)−

∫
‖rx−y‖=ε

P (y)
∂

∂n
.

1

‖ry − x‖d−2
dσε(y)

= d

∫
Sd−1

P (rx+ εy)dσ(y)→ dP (rx) as ε→ 0

Last and least:∫
Sd−1(rx,ε)

u(x, y)
∂P

∂n
(y) dσε(y) =

∫
Sd−1(rx,ε)

( 1

‖rx− y‖d−2
− 1

‖ry − x‖d−2

)∂P
∂n

(y) dσε(y)
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The right term of the integrand is continuous, thus we only need to take care
of: ∫

Sd−1(rx,ε)

1

‖rx− y‖d−2

∂P

∂n
(y) dσε(y) = ε

∫
Sd

∂P

∂n
(y) dσ(y)

Taking ε→ 0 allows to conclude.

Proposition 3.6 (Density of harmonic polynomials in L2(Sd−1)). Harmonic
polynomials are dense in L2(Sd−1).

Proof. Fix the space of polynomials of degree less than p as: Rp[X1, ..., Xd]. We
note ∆p : Rp[X1, ..., Xd] → Rp−2[X1, ..., Xd], X → ∆X is linear and Ker∆p ∩
(‖X‖2−1)Rp−2[X1, ..., Xd] = {0} from supra (because it values 0 on the sphere
and we can use Prop. 3.5). Rp[X1, ..., Xd] = Ker∆p+(‖X‖2−1)Rp−2[X1, ..., Xd].

Now let f ∈ L2(Sd−1), and write f̃(x) = ‖x‖f( x
‖x‖ ), which is a L2 extension of

f to K = B(0, 3
2 )\B(0, 1

2 ). For ε > 0, by Bolzano-Weierstrass, there exists P s.t.

supx∈K ‖P (x)− f̃(x)‖ < ε (you can regularize f̃ first with a unit approximation
up to a precision ε > 0). Then, from supra, we note the restriction of P to
Sd−1 coincides with a harmonic polynomial, as P = Q + (‖X‖2 − 1)R with
∆Q = 0.

Proposition 3.7. If Y is harmonic and homogenous of degree k, then:

∆Sd−1Y = −k(k + d− 2)Y (3.28)

Proof. Here, Y (‖x‖ x
‖x‖ ) = ‖x‖kY ( x

‖x‖ ) and using ∆(uv) = v∆u + 2∇u.∇v +

u∆v, and x.∇P (x) = kP (x) for P homogeneous, combined with Prop. 3.4 we
get: ∆Sd−1Y = −k(k + d− 2)Y .

This implies that if P polynomial is homogeneous of degree k and harmonic,
we get:

rkP (x) =

∫
Sd−1

P (y)
1− r2

‖rx− y‖d
dσ(y) , (3.29)

and thus we can identify the term of degree k of the serie.

Proposition 3.8 (Poisson Kernel). For 0 ≤ r < 1, we write:

Pr(x, y) =
1− r2

(1− 2r〈x, y〉+ r2)d/2
, (3.30)

such that if Pr(x, y) =
∑∞
n=0 Pn(〈x, y〉)rn, then Pn is a (real) polynomial of

degree n and we introduce for f ∈ L2(Sd−1):

Kn(f)(x) =

∫
Sd−1

Pn(〈x, y〉)f(y)dσ(y) . (3.31)

Then:
Pr(x, y) ≥ 0 , (3.32)
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and: ∫
Sd−1

Pr(x, y)dσ(x) = 1 , (3.33)

and:

∀P ∈ Hdn, P = Kn(P ) ,

and for m 6= n, Km(P ) = 0 if P ∈ Hdm, and finally:

∀f ∈ L2(Sd−1), f =

∞∑
n=0

Kn(f) .

Proof. First, each Pn is a polynomial by composition of the Taylor expansions of
r → 1−2r〈x, y〉+r2 and x→ 1

(1+x)d/2 . Note that Kn is well-defined because f ∈
L1(Sd−1) by Jensen inequality. We also note that for any f ∈ L2(Sd−1),Kn(f)
is a polynomial (by linearity of the ingral). The first claim is clear. The second
claim is obtained by inserting in Eq. (3.29) P = 1 which is clearly harmonic.
The third claim is also obtained by using Eq. (3.29) and by identifying the
n-term of the development of Pr and checking its degree. We also observe that
for any ∆P = 0:

P (rx) =

∞∑
n=0

rnKn(P )(x)

We deduce by identification, since Kn(P ) is a polynomial in x, and also that
∆Kn(P ) = 0 by differentiation along x. On the left, one has a finite degree har-
monic polynomial, and on the right, a sum of orthonormal element of harmonic
and homogeneous polynomials: the right term must be finite. Thus, taking
r → 1 is legit, and we have:

P =

∞∑
n=0

Kn(P )

Thus, {Kn}n spans harmonic polynomials. Note that then, on the set of har-
monic polynomials: K∗n = Kn, KnKm = Knδm=n and {Kn} is thus an orthogo-
nal family of projectors of harmonic polynomials: it implies that if f ∈ L2(Sd−1)
and m ≤ N :

〈f −
N∑
n=0

Kn(f),Km(f)〉 = 〈f,Km(f)〉 − ‖Km(f)‖2 = 0 ,

because ‖Km(f)‖2 = 〈f,K∗m(Km(f))〉 = 〈f,Km(f)〉. Thus, f −
∑N
n=0Kn(f) is

orthogonal with
∑N
n=0Kn(f) and:

‖f‖2 = ‖f −
N∑
n=0

Kn(f)‖2 + ‖
N∑
n=0

Kn(f)‖2 ≥
N∑
n=0

‖Kn(f)‖2
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From Prop. 3.6, harmonic polynomials are dense in L2(Sd−1) and thus, for
ε > 0 there is P,∆P = 0:

‖f − P‖ < ε .

All above combined together implies that:

‖f −
∞∑
n=0

Kn(f)‖2 = ‖f −P +

∞∑
n=0

Kn(f −P )‖2 ≤ 2‖f −P‖2 + 2‖f −P‖2 = 4ε2 .

From the previous proposition and Bessel identity, we have a Perseval iden-
tity for f ∈ L2(Sd−1):

‖f‖2 =

∞∑
m=0

‖Km(f)‖2 . (3.34)

Note also that if
∑
n ‖Pn‖2 < ∞, then let f =

∑
n P

n ∈ L2(Sd−1) and

Kn(f) = Pn: we thus have built an isomorphism. We introduce Λd = 2π
d
2

Γ( d2 )
the

area of Sd−1 for the Lebesgue measure. We will use the following Lemma:

Lemma 3.3. We obtain for any x, y ∈ Sd−1:

Kn(Pr(〈x, .〉)(y) = rnPn(〈x, y〉)

and
Kn(Pm(〈x, .〉))(y) = δm=nPm(〈y, x〉) . (3.35)

Proof. Here, for x, y ∈ Sd−1:

Kn(Pr(〈x, .〉)(y) =

∫
Sd−1

∑
m

rmPm(〈x, y〉)Pn(〈y, z〉) dσ(z) (3.36)

=
∑
m

rm
∫
Sd−1

Pm(〈x, y〉)Pn(〈y, z〉) dσ(z) (3.37)

Now, we note that:

Kn(Km(f))(y) =

∫
Sd−1

Pn(〈x, y〉)
∫
Sd−1

Pm(〈x, z〉)f(z)dσ(z) dσ(x) (3.38)

=

∫
Sd−1

( ∫
Sd−1

Pn(〈x, y〉)Pm(〈x, z〉)
)
dσ(x) f(z)dσ(z) (3.39)

= δm=nKn(f)(y) (3.40)

This being true for any f , we get that:∫
Sd−1

Pn(〈x, y〉)Pm(〈x, z〉)dσ(x) = δm=nPm(〈y, z〉) . (3.41)

Combining the two identity, we get:

Kn(Pr(〈x, .〉))(y) = rnPn(〈x, y〉)
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The previous computations imply that:

Proposition 3.9 (Zonal harmonics). With the notations of the previous propo-
sition, we have degPn = n, Pn(1) = dim(Hdm) and∫ 1

−1

Pn(t)Pm(t)(1− t2)
d−3

2 dt = δm=ndim Hdm
Λd

Λd−1
. (3.42)

This family of polynomial is thus uniquely defined.

Proof. Using the lemma above, for x = y ∈ Sd−1, this leads to:∫
Sd−1

Pn(〈x, z〉)Pm(〈x, z〉)dσ(z) = δm,nPm(1) . (3.43)

This writes, via a change of variable and given this quantity is independant of
the initial direction x ∈ Sd−1:∫
Sd−1

Pn(〈x, y〉)Pm(〈x, y〉)dσ(y)

=
1

Λd

∫ π

0

...

∫ π

0

∫ 2π

0

Pn(cos(ϕ1))Pm(cos(ϕ1)) sind−2(ϕ1)... sin1(ϕd−1)dϕ1...dϕd−1

=
Λd−1

Λd

∫ 1

−1

Pn(t)Pm(t)(1− t2)
d−3

2 dt ,

with the change of variable t = cos(ϕ1). Now, because Km is a projector on
Hdm, if {ei} is an orthonormal basis of Hdm, then:

Km(P ) =
∑
i

〈ei, P 〉ei

and having in mind that: Km(ei)(x) = 〈Pm(〈x, .〉), ei〉 = ei(x) thus:

Km(Pm(〈x, .〉))(x) =
∑
i

〈ei, Pm(〈x, .〉))ei(x) =
∑
i

|ei(x)|2

Now, we conclude because:

dim(Hdm) = Tr(Km) (3.44)

=
∑
i

‖ei‖2 (3.45)

=

∫
Sd−1

Km(Pm(〈x, .〉))(x) dσ(x) (3.46)

=

∫
Sd−1

Pm(〈x, y〉)Pm(〈x, y〉) dσ(y) dσ(x) (3.47)

= Pm(1) . (3.48)
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Note that the above formula characterizes exactly the family {Pn}n. It is
possible to observe that this family satisfies:

Proposition 3.10 (Rodrigues representation formula). For a given d ∈ N, the
only family satisfying the constraints above is given by:

Pn(t) = (−1)n
Γ(d−1

2 )

2nΓ(n+ d−1
2 )

(1− t2)
3−d

2
d

dtn
(
(1− t)n+ d−3

2

)
. (3.49)

Proof. See the exercise sheet.

Remark 3.5. Note that this could have been inferred from another variant of
Rodrigues’ formula that links a family orthogonal for a given scalar product to
an ODE satisfied by the system of polynomials, see https: // fr. wikipedia.

org/ wiki/ Th% C3% A9orie_ de_ Sturm-Liouville .

Proposition 3.11. Consider the action ρ : SOd(R) → L2(Sd−1), rθ → (u →
x(r−θu)). Then its invariant irreducible subspaces are Hdn.

Proof. Here, note that if P ∈ Hdn, then:

∆(ρ(rθ)(P )) = 0

and
ρ(rθ)(P )(λx) = λnρ(rθ)(P )(x)

Thus, ρ(rθ)Hdn ⊂ Hdn. See [15, Theorem 1.17] to obtain the irreducibility.

Remark 3.6. We recover that SOd(R) is not commutative, as the irreducible
subspaces are not of dimension 1, except for d = 2.

3.2.2 Fourier analysis on Sd−1

Now, for f ∈ L2(Sd−1) and g ∈ L1

(
[−1, 1], (1− t2)

d−1
2 dλ(t)

)
, we can introduce

a convolutional operator:

f ~ g(x) ,
∫
y∈Sd−1

f(y)g(〈x, y〉)dσ(y) , (3.50)

which is clearly covariant with SOd(R).This is formalized by the following propo-
sition and formula:

Proposition 3.12 (Funk-Hecke formula). For f ∈ L2(Sd−1) and g ∈ L2

(
[−1, 1], (1−

t2)
d−1

2 dλ(t)

)
, then f ~ g ∈ L2(Sd−1) and:

f ~ g =

∞∑
n=0

λn(g)Kn(f) , (3.51)

where λn(g) = Λd−1

Λddim Hdn

∫ 1

−1
Pn(t)g(t)(1− t2)

d−1
2 dt.
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Proof. First, we note that by Cauchy-Schwartz, if f ∈ L2(Sd−1), then |(f ~
g)(x)| ≤

∫
y∈Sd−1 |f |2(y) dσ(y)

∫
y∈Sd−1 |g(〈x, y〉)|2 dσ(y) ≤ ‖f‖2‖g‖2. Thus the

function is bounded, and thus f ~ g ∈ L2(Sd−1). From the proposition above
and by density, we have by decomposition g:

g(〈x, y〉) =
∑
n

λn(g)Pn(〈x, y〉) , (3.52)

where λn(g) = Λd−1

Λddim Hdn

∫ 1

−1
Pn(t)g(t)(1− t2)

d−1
2 dt. We’re thus allowed to com-

pute, using KmKn = δm=nKn:

Kn(f ~ g) =

∫
y∈Sd−1

Pn(〈x, y〉)
∫
z∈Sd−1

∑
m≥0

λm(g)Pm(〈z, y〉)f(z)dσ(z)dσ(x)

= Kn(f)λn(g) .

We remind the following Lemma, that shows that Pr acts a unit approxima-
tion for the L∞-norm:

Lemma 3.4. If f is continuous in x, then one has a point-wise convergence:

f(x) = lim
r→1

∫
Sd−1

Pr(x, y)f(y)dσ(y) . (3.53)

Furthermore, if f is continuous on Sd−1, the convergence above is uniform.

Proof. Assume that f is continuous in x, we note that for ‖x− y‖ > δ, so that
−2〈x, y〉 > δ2 − 2 and 1− 2r〈x, y〉+ r2 > 1 + r2 + r(δ2 − 2) > 0,∀r ∈ [0, 1] and
then:

|
∫
Sd−1

Pr(x, y)(f(x)− f(y))dσ(y)| ≤
∫
Sd−1

Pr(x, y)|f(x)− f(y)|dσ(y)

≤
∫
‖x−y‖≤δ

Pr(x, y)|f(x)− f(y)|dσ(y)

+

∫
‖x−y‖>δ

Pr(x, y)|f(x)− f(y)|dσ(y)

≤
∫
‖x−y‖≤δ

Pr(x, y)εdσ(y) +O
(
(1− r)2‖f‖∞

)
≤ ε+O

(
(1− r)2‖f‖∞

)
Thus, for r close enough to 1, one gets:

f(x) = lim
r→1

∫
Sd−1

Pr(x, y)f(y)dσ(y) (3.54)

By compacity, the second part of the proposition is straightforward.

39



Similarly to Fourier, we can characterize the decay of differentiable functions:

Proposition 3.13. Assume that f is C2p (meaning its 2p differentiable with
continuous 2p differential, on the sphere), then:

‖Kn(f)‖ = o(
1

n2p
) . (3.55)

Proof. First, we observe that:

∀P ∈ Hdn,−n(n+ d− 2)P = ∆Sd−1P = Kn(∆Sd−1P ) (3.56)

and cancels if P ∈ Hdm,m 6= n. Thus, Kn(∆Sd−1f) = ∆Sd−1Kn(f), by density.
Now, we have the convergence in L2 of:

∆p
Sd−1f =

∑
n

Kn(∆Sd−1f) =
∑
n

∆Sd−1Kn(f) =
∑
n

(−n(n+ d− 2))pKn(f) .

(3.57)
Thus ‖∆Sd−1Kn(f)‖ → 0(by Cauchy criterium) and ‖Kn(f)‖ = o( 1

n2p ).

Reciprocally, we have:

Proposition 3.14. Assume that ‖Kn(f)‖∞ = o( 1
n2(p+1) ), then f is C2p.

Proof. We thus have that
∑
n ‖∆pKn(f)‖∞ converges normally and given

∑
nKn(f)

also converges (and all its derivatives) and that each term is smooth, we have
that f =

∑
nKn(f) is C2p.

Note that we have also been able to exploit the Lie group structure, as
discussed in Chapter 2.
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Chapter 4

Approximation properties
of (shallow) Neural
Networks

In this chaper, we will derive several bounds concerning the approximation and
generalization power shallow neural networks. Notably, those bounds are based
on [3]. We will mainly use the work done in the Chaper 3 of this document,
that will allow us to derive some rates for spherical functions. We will then note
that the weights of neural networks inherit a spherical symmetry, and thus are
more amenable to be expressed as observed by [3, 10].

4.1 Convex Infinite width shallow neural net-
works

4.1.1 From Rd to Sd−1

We now focus on the specific case of generic 1-hidden layer neural networks.
We assume the neural network has no bias, as the bias can be removed via

wTx + b =

[
w
b

]T [
x
1

]
. If Φ is a 1-hidden layer Neural Network with ReLU

non-linearity, we introduce wk = θk‖wk‖ ∈ Rd, s.t. θk ∈ Sd−1 and we note that
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∀x ∈ Rd and Γ = [w1, ..., wK , α1, ..., αK ]:

Φ(x; Γ) =
∑
k≤K

αkρ(〈x,wk〉) (4.1)

=
∑
k≤K

αk
‖wk‖

ρ(〈x, θk〉) (4.2)

=

∫
Sd−1

ρ(〈x, θ〉) dµK(θ) , (4.3)

where µK =
∑
k≤K

αk
‖wk‖δθk is a discrete measure. In order to apply the results

of Chapter 2, let us assume that Φ(x;w) is only defined over half the unit ball
of Rd. It implies, by homogeneity of ρ, that if ‖x‖ ≤ 1

2 , for |t| =
√

1− ‖x‖2, we
can define:

Φ̃((x, t);µK) , |t|Φ(
x

t
; Γ) = Φ(x; Γ) if t > 0 . (4.4)

By using Φ̃, which is defined over the sphere and is parametrized by the sphere,
we have thus used fully the symmetry of the problem. In fact, we will consider
signals from L2(Sd−1). Indeed, fix as a reference measure the uniform measure
σ on Sd−1 as in Chapter 3, and for some given target function f : Sd−1 → R
(we will specify later the target set), we relax Eq. 4.3 in order to approximate
f via:

f(x) ≈
∫
Sd−1

ρ(〈x, θ〉)p(θ)dσ(θ) = ρ~ p(x) , (4.5)

for p ∈ L2(Sd−1). This is a relaxation because p(θ)dσ(θ) defines a finite measure
(by Jensen inequality) for every p ∈ L2(Sd−1). We thus introduce:

F2 = {ρ~ p, p ∈ L2(Sd−1)}, (4.6)

that will study below. Interestingly, this is structured as a vector space.

4.1.2 F2 as a RKHS

In this section, we will see that we can derive many properties in a similar
fashion to what is done in a Fourier-like framework. For p ∈ L2(Sd−1), using
Prop. 3.12, we have:

Kn(ρ~ p)(x) = λn(ρ)Kn(p)(x) . (4.7)

This implies the following Lemma:

Lemma 4.1. Let f ∈ L2(Sd−1), then f ∈ F2 if and only if
∑
λn(ρ)6=0

‖Kn(f)‖2
λn(ρ)2 <

∞.

Proof. Indeed, if f ∈ F2, then there is p ∈ L2(Sd−1) such that f = ρ ~ p, and

thus
∑
λn 6=0 ‖Kn(p)‖2 =

∑
λn 6=0

‖Kn(f)‖2
λn(ρ)2 < ∞. Reciprocally, we can consider

p̃ =
∑
λn 6=0

Kn(f)
λn

∈ L2(Sd−1), by assumption. Yet, f = ρ~ p.
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Proposition 4.1. F2 is a RKHS with norm given by

‖f‖F2
= inf
f=ρ~p,p∈L2(Sd−1)

‖p‖. (4.8)

and the corresponding kernel k is given by:

k(x, y) =

∫
Sd−1

ρ(〈x, z〉)ρ(〈y, z〉) dσ(z) . (4.9)

Proof. Indeed, let f ∈ F2, for a given decomposition f = ρ ~ p(x), given that
|ρ(〈x, θ〉)| ≤ 1, we have:

|ρ~ p(x)| ≤ ‖p‖2 .

In particular,

|ρ~ p(x)| ≤ inf
f=ρ~p,p∈L2(Sd−1)

‖p‖2 .

Let Tp = ρ ~ p =
∑
n λn(ρ)Kn(f), s.t. T ∗ = T , and introduce next Uf =∑

λn(ρ)>0 λ
−1
n (ρ)Kn(f). It’s clear that:

TUT = T and UTU = U

and UT = TU thus (UT )∗ = UT and (TU)∗ = TU . Thus, U is the pseudo-
inverse of T . In fact, one has: inff=ρ~p,p∈L2(Sd−1) ‖p‖ = ‖Uf‖ which defines
a norm on F2 (as Uf = 0 implies f = 0 for f ∈ F2). It’s thus natural to
introduce: 〈f, g〉F2

= 〈Uf,Ug〉. Now, we note that:

f(x) = Tp(x) = TUTp(x)

= TUf

=

∫
Sd−1

ρ(〈x, y〉)Uf(x) dσ(y)

= 〈ρ(〈x, .〉), Uf〉
= 〈ρ(〈x, .〉), UTUf〉
= 〈(UT )∗ρ(〈x, .〉), Uf〉
= 〈U(Tρ(〈x, .〉)), Uf〉
= 〈Tρ(〈x, .〉), f〉F

And thus, the kernel is given by:

k(x, y) = Tfρ(〈x, .)(y) =

∫
Sd−1

ρ(〈x, z〉)ρ(〈y, z〉)dσ(z)
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The first necessary tool to understand better F2(σ) is to compute explicitely
{λn(ρ)}n. This is done via:

Proposition 4.2. Assuming that ρ(x) = max(0, x), we get:

λ2n+2(ρ) =
Γ(d−1

2 )

(−2)nΓ(n+ d−1
2 )

(−1)
n
2 +1

(
n+ d−3

2
n
2

)
n! ∼ C(d)(−1)n+1(2n)−

d+3
2 ,

(4.10)

where C(d) = Γ(d−1
2 )
√

2
nπ2

d−3
2 e

d−3
2 and λ2n+3 = 0.

Proof. Using Prop. 3.10, we need to compute:

λn(ρ) =

∫ 1

−1

max(0, t)Pn(t)(1− t2)
d−3

2 dt =
Γ(d−1

2 )

(−2)nΓ(n+ d−1
2 )

∫ 1

0

t
d

dtn
(
(1− t2)n+ d−3

2

)
dt .

It follows:∫ 1

0

t
d

dtn
(
(1− t2)n+ d−3

2

)
dt =

∫ 1

0

t
1

2n
d

dtn
(1− t2)n+ d−3

2 dt

=
(
[t

d

dtn−1
(1− t2)n+ d−3

2 ]10 −
∫ 1

0

d

dtn−1
(1− t2)n+ d−3

2 dt
)

= −[
d

dtn−2
(1− t2)n+ d−3

2 ]10

= −
∞∑
k=0

(
n+ d−3

2

k

)
(−1)k[

d

dtn−2
t2kdt]10

Now, for n > 1, we have:∫ 1

0

t
d

dtn
(
(1− t)n+ d−3

2

)
dt =

{
(−1)

n
2 +1
(n+ d−3

2
n
2−1

)
n!, if n− 2 = 2k or n = 1

0, otherwise.

(4.11)

Note that
(
n
k

)
= Γ(n+1)

Γ(k+1)Γ(n−k+1) , even for non-integer values. Using Lemma 3.1,

we get an equivalent given by (having in mind that Γ(z+1) ∼ (2πz)1/2( ze )z)(for
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odd values of n):

λn(ρ) ∼
Γ(d−1

2 )

(−2)nΓ(n+ d−1
2 )

(−1)
n
2 +1 Γ(n+ d−1

2 )

Γ(n2 )Γ(n2 + d+1
2 )

Γ(n+ 1)

∼
Γ(d−1

2 )

2n
(−1)

n
2 +1 Γ(n+ 1)

Γ(n2 )Γ(n2 + d+1
2 )

∼
Γ(d−1

2 )

2n
(−1)

n
2 +1

√
2πnn

n

en√
2π(n2 − 1)

(n2−1)
n
2
−1

e
n
2
−1

√
2π (n+d−1)

2

n+d−1
2

n+d−1
2

e
n+d−1

2

∼ Γ(
d− 1

2
)

√
2

nπ
2
d−3

2 e
d−3

2 (−1)
n
2 +1n

3−d
2 .

We need also to compute:

λ0 =

∫ 1

0

t(1− t2)
d−3

2 dt = [
(1− t2)

d−1
2

d−1
2

]10 =
2

d− 1
(4.12)

and

λ1 =
1

1− d

∫ 1

0

t
d

dt

(
(1− t2)

d−1
2

)
dt

=

∫ 1

0

t2(1− t2)
d−3

2 dt > 0

where we just needed to verify it is not 0.

Now, we can then exhibit several elements which belong to F2.

Proposition 4.3 (Elements in F2(σ)). Let f : Sd−1 → R, of class C2k with
2k ≥ d+5

2 and f odd, then f ∈ F2(σ).

Proof. From Prop. 3.13, f ∈ L2(Sd−1) and ‖Kn(f)‖ = o( 1
n2k ). This implies

from supra that ‖K2n(f)‖2
λ2

2n
∼ (2n)d+3−4k, and thus f ∈ F2(σ) because of our

assumption on k.

4.2 Approximation properties of F2

4.2.1 Lipschitz function approximations

Now, we show that Lipschitz function can be well approximated in F2 and we
derive the rate of convergence in the following proposition:

Proposition 4.4. There exists δ > 0 (that depends only on d) such that for
any f η-Lipschitz, with f(0) = 0 and which is odd, there exists p ∈ L2(Sd−1)
with ‖p~ ρ‖F ≤ δ, and:

‖ρ~ p− f‖∞ ≤ O
(
η log(

δ

η
)(
δ

η

)− 2
d−3 ) . (4.13)
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Proof. f is Lipschitz, thus it is an element of L2(Sd−1) as it is bounded because
continuous on a compact. Furthermore, from the assumptions, ‖f‖ ≤ 2η. We
consider:

|f ~ Pr(x)− f(x)| = |
∫
Sd−1

Pr(〈x, y〉)
(
f(y)− f(x)

)
dσ(x)|

≤ η
∫
Sd−1

Pr(〈x, y〉)‖x− y‖dσ(x)

=
√

2η

∫
Sd−1

Pr(〈x, y〉)
√

1− 〈x, y〉dσ(x)

≤ O(d)
√

2η(1− r2)

∫ 1

−1

(1− t2)
d−1

2

(1 + r2 − 2tr)
d
2

√
1− t dt

Lemma 4.2. ∫ 1

−1

(1− t2)
d−1

2

(1 + r2 − 2tr)
d
2

√
1− t dt = O(ln(1− r)) . (4.14)

Proof. Here, we do u =
√

1− t leading to:∫ 1

−1

(1− t2)
d−1

2

(1 + r2 − 2tr)
d
2

√
1− t dt =

∫ √2

0

(
1− (1− u2)2

) d−1
2(

1 + r2 − 2r(1− u2)
) d

2

u2du

≤ O(d)

∫ √2

0

ud−1(
(1− r)2 + 2ru2)

) d
2

du

≤ O(d)

∫ √2

0

u2d−2

(1− r)d + r
d
2 (
√

2u)d
du

≤ O(d)

∫ 2

0

1

(1− r)d + r
d
2 v
dv

≤ O(d)
1

r
d
2

ln(2 + (
1− r
2
√
r

)d) = O(ln(1− r))

Thus, ‖f ~Pr−f‖∞ ≤ O
(
η(1− r) ln(1− r)

)
. Let us now compute ‖Pr~f‖.

Prop. 3.12 leads to:
Kn(f ~ Pr) = rnKn(f) . (4.15)

and thus, the norm of the candidate p is no more than:∑
n≥0

λ−2
2n r

2n‖Kn(f)‖2 ≤ sup
n
λ−2

2n r
2nη2 (4.16)

= O(sup
n

(2n)d+3r2n)η2 (4.17)

= O
(
(1− r)−d−3η2

)
, (4.18)

where we have used the following lemma:
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Lemma 4.3. If 0 < r < 1, α > 0, then supx>0 x
αrx = O((1− r)−α) .

Proof. Here, let f(x) = xαrx, then f ′(x) = αxα−1rx+ln rrxxα = xα−1rx(x ln r+
α). Thus, there is a maximum at x = − α

ln r > 0 (because ln r ≤ 0), which is s.t.:

f(
α

ln r
) =

(
− α

ln r

)α
r−

α
ln r = O((ln

1

r
)−α) = O((1− r)−α) (4.19)

Thus, if (1 − r)− d−3
2 η = δ, then

(
η
δ

) 2
d−3 = (1 − r) and ‖f ~ Pr − f‖∞ =

O
(

log( δη )( δη
)− 2

d−3 ).

Remark 4.1. The bound could have been tighter by using that there exists
h ∈ L2(Sd−1) s.t. f = ∆

1
2h yet I chosed to simplify the exposition.

4.2.2 Finite neurons approximation

Now that we have derived several approximation properties in F2, we derive
some results for finite width Neural Networks. This can be technically challeng-
ing, as typically, x→ 〈x, θ〉 6∈ F2.

Proposition 4.5 (Random sampling, L2-norm). Let f ∈ L2(Sd−1), then for
any n, there exists v1, ..., vn s.t.:

‖f ~ ρ−
n∑
i=1

ρ(vTi .)f(vi)‖ ≤
√

8πd

n
‖f‖ . (4.20)

Proof. We follow a very standard scheme of proof. We introduce the r.v.s vi ∼ σ.
We let δn(x) = 1

n

∑n
i=1 ρ(vTi x)f(vi) − f ~ ρ(x) then E[δn(x)] = 0,∀x ∈ Sd−1.

Furthermore:

E[‖δn‖2] =
1

n
Ev[‖ρ(.T v)f(v)‖2]− ‖ρ~ f‖2 , (4.21)

yet here:

Ev[‖ρ(.T v)f(v)‖2] =

∫
Sd−1

∫
Sd−1

ρ2(vTx)f2(v)dσ(v)dσ(x) = ‖ρ‖2‖f‖2 . (4.22)

Consequently, we obtain:

E[‖δn‖2] ≤ 1

n

[
‖ρ‖2‖f‖2 − ‖ρ~ f‖2

]
. (4.23)

It implies that there exists v1, ..., vn s.t.:

‖ 1

n

n∑
i=1

ρ(vTi x)f(vi)− f ~ ρ(x)‖2 ≤ 1

n

[
‖ρ(〈e, 〉)‖2‖f‖2 − ‖ρ~ f‖2

]
, (4.24)
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where e is any fixed vector. Now, it’s enough to note that:

‖ρ‖2 =

∫
Sd−1

ρ2(xT y)dσ(y) =
Λd−1

Λd

∫ π
2

0

sind−2(θ)− sind(θ)dθ =
Λd−1

Λd

1

d− 1
Wd

(4.25)

where Wd =
∫ π

2

0
sind(θ)dθ =

Γ( d+1
2 )
√
π

2Γ( d2 +1)
. (we have recognized a Wallis integral...)

Thus,

‖ρ‖2 =
Γ(d2 )2πd/2

Γ(d−1
2 )2π(d−1)/2

Γ(d+1
2 )
√
π

2Γ(d2 + 1)

1

d− 1
=
πd

8
. (4.26)

Remark 4.2. It is crucial to observe that our bounds are obtained with the L2-
norm rather than the L∞-norm. In fact, by considering functions parametrized
by a finite measure µ (which means that |µ|(Sd−1) < ∞), we consider could
instead for such a measure µ:

f(x) =

∫
Sd−1

ρ(〈x, y〉) dµ(y) . (4.27)

Then, [3] shows tighter bounds and adaptativity of the approximation bounds to
the target function regularity.
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Chapter 5

Lazy regime to train Neural
Networks

In this chapter, we propose to analyze the training of Neural Networks in sev-
eral particular cases where they behave like their linearized counter-parts in
a neighborhood of their initialization. First, we discuss some basic properties
of the gradient of those highly non-linear models, then we will discuss several
standard properties of the Neural Tangent Kernel [21] which is a particular case
of the Lazy Training regime [13].

5.1 Training a Neural Network

5.1.1 A note on the back-propagation mechanism

First, we review differentiable properties of deep models, viewed as a real-valued
function, and in particular how to compute the gradient w.r.t. their parameters.
We will assume by now that Φ : Rp × Ω → Rk is a.s. differentiable, and that
the loss function ` : Rk → R+ is L-Lipschitz.

We remind that the gradient of `◦Φ taken at p = (W,x), where W ∈ Rd, x ∈
Ω along x for a cost ` is obtained from the differential via:

〈∇x(` ◦ Φ)(p),x〉 , ∂x(` ◦ Φ)p(x) ,

where 〈., .〉 is here the standard Euclidean scalar product. On the other hand,
by the chain rule, we get:

∂x(`◦Φ)p(x) = ∂`Φ(p)◦∂xΦp(x) = 〈∇`(Φ(p)), ∂xΦp(x)〉 = 〈∂xΦTp∇`(Φ(p)),x〉 ,

which implies that:

∇x(` ◦ Φ)(p) = ∂xΦTp∇`(Φ(p)) .

This has several implications on ∇x(` ◦ Φ)(p): first, one has to compute Φ(p)
(forward pass) from the first to the last layer, then, one evaluate ∂xΦTp (backward
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pass) from the last to the first layer. Let f1, ..., fJ be some functions with
parameters (θ1, ..., θJ) such that fj+1 ◦ fj(xj) , fj+1(fj(xj ; θj); θj+1) makes
sense (note we explicitly remove the dependency in θj , θj+1 here). This implies
that if Φx = fJ ◦ ... ◦ f1(x), then:

∂xΦTx = (∂xf1)Tx ...(∂xJ−1
fJ)TfJ−1(x)x . (5.1)

This leads to the celebrated back-propagation algorithm, and now well-known
automatic differentiation tools: note that for each fj , we need to know fj , ∂fj
to further obtain:

Proposition 5.1. If Θ = (θ1, ..., θJ), we have:

∇θj (`◦ Φ)(Θ;x) = (∂θjfj)
T
fj−1(x)(∂xjfj+1)Tfj(x)...(∂xJ−1

fJ)TfJ−1(x)∇`(Φx) (5.2)

Furthermore, for instance if fj(xj ,Wj) = ρWjxj, we have:

∇Wj
`(Φx) = [∂ρ]Wjfj(x)∇xj `(fJ ◦ ... ◦ fj+1)fj(x)T (5.3)

Proof. Almost everything is direct, and the last claim follows via: 〈∇Wj
`(Φx),W 〉 =

Tr(xj∇xj `(fJ ◦ ... ◦ fj+1)T [∂ρ]WjxjW )

Note that the scalar product linked to A,B matrix is here Tr(ATB).

5.1.2 The ”best” non-convex convergence rate with SGD

We now discuss a standard convergence rate in non-convex optimization [8],
which requires to define and study the risk R:

R(Φ(W )) , EX [` ◦ Φ(X;W )] , (5.4)

Proposition 5.2. If ` is L-Lipschitz, then R is L-lipschitz and non-negative.

Our goal, in the following, will be to minimize R:

inf
W
R(Φ(W )). (5.5)

Here, we show under minimal assumptions that a gradient descent will con-
verge to a local minimum. For a batch B = (x1, ..., x|B|) of data, consider the
Stochastic Gradient Descent step given by:

Wt+1 = Wt − ηt
1

|B|

|B|∑
i=1

∇W (` ◦ Φ)(Wt;Xi) . (5.6)

Following [9], we would like to design a Lyapunov function that will constrain
the optimization path to a local minimum. We thus introduce V : Rd → R+:

V (W ) = (R ◦ Φ)(W )− inf
W̃

(R ◦ Φ)(W̃ ) , (5.7)
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and we note that if:

g(W ) ,
1

B

|B|∑
i=1

∇W (RB ◦ Φ)(W ;Xi) , (5.8)

then,
E[g(W )] = V ′(W ) . (5.9)

Via Prop. 5.2, we know that V is differentiable, with gradients L-Lipschitz,
in other words that V is L-smooth, implying that:

V (W ) ≤ V (W̃ ) + V ′(W̃ )T (W − W̃ ) +
L

2
‖W − W̃‖2 (5.10)

Then the computations are straighforward, as Wt+1 = Wt − ηtg(Wt), and:

E[V (Wt+1)|Wt] ≤ V (Wt)− ηtE[g(Wt)]
TV ′(Wt) + η2

t

L

2
‖g(Wt)‖2 , (5.11)

Proposition 5.3. If
∑
t η

2
t <∞,

∑
t ηt =∞ and assume that g has a bounded

variance, i.e., ∃M > 0 : E[‖g(W )‖2] ≤M + ‖V (W )‖2, then:

lim inf
t

E[‖V ′(Wt)‖2] = 0 . (5.12)

Proof. From supra, we get:

E[V (Wt+1)] ≤ E[V (Wt)]− (ηt −
η2
tL

2
)E[‖V ′(Wt)‖2] +

η2
tL

2
M , (5.13)

and summing up to T leads to:

T−1∑
t=0

(ηt −
η2
tL

2
) inf

0≤t≤T
E[‖V ′(Wt)‖2] ≤

T−1∑
t=0

(ηt −
η2
tL

2
)E[‖V ′(Wt)‖2] (5.14)

≤ E[V (W0)] +

T−1∑
t=0

η2
tL

2
M − E[V (WT )] <∞

(5.15)

which implies, as T →∞, that inft≤T E[‖V ′(ωt)‖2]→ 0.

We note those bounds are mainly vacuous because they do can not guarantee
anything about the quality of the (only local) optimum reached.

5.1.3 Compacity of the training path on a finite horizon

By now, use a more general formalism. Let (F , 〈., .〉F ) be some Hilbert space
of functions defined over an open set Ω ⊂ Rd. It could be, for instance, the
Sobolev space H1(Ω) = {f ∈ L2(Ω), ∂uif ∈ L2(Ω), 1 ≤ i ≤ d}. We also assume
that Ω is bounded (thus our data are assumed to belong to a compact, which
is the case for practical applications). In this particular case, I ∈ F (which will
be an useful identification). Note that F could also potentially have a RKHS
structure, meaning that δx : x→ f(x) is continuous for ‖.‖F .
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Remark 5.1. In this context, it is natural to consider the squared loss `(Φ) =
‖Φ− Φ∗‖2F for some target Φ∗ ∈ F .

We now assume thatW → Φ(W ) ∈ F is a.s. differentiable with differentiable
locally-Lipschitz, and that R : F → R+ is differentiable and L-smooth. We
consider the training ODE (which is the continuous version of the section above)
given by:

d

dt
W (t) = −λ∇W (R ◦ Φ)(W (t)) , (5.16)

where λ > 0 is a step length. In all generality, we have the following proposition:

Proposition 5.4. For a finite horizon T , the risk is bounded along the path of
optimization for t ∈ [0, T ]:

R(Φ(W (t)) ≤ R(Φ(W (0))) , (5.17)

the trajectory of W is bounded along the path of optimization:

‖W (t)−W (0)‖ ≤
√
TλR(Φ(W (0)) , (5.18)

Proof. For the first claim, it’s standard to notice that d
dt (R ◦ Φ)(W (t)) =

− 1
λ‖

d
dtW (t)‖2 = −λ‖∇W (R◦Φ)(W (t))‖2, thus R(Φ(W (t)) ≤ R(Φ(W (0)). We

see that, by Cauchy-Schwartz:

‖W (t)−W (0)‖2 ≤
( ∫ t

0

‖ d
dt
W (t)‖

)2 ≤ −λT ∫ t

0

d

dt
(R◦Φ)(W (t)) ≤ TλR(Φ(W (0))) .

(5.19)

We also remind:

Lemma 5.1 (Grönwall’s lemma). If for any t ≥ 0, y′(t) ≤ ay(t) + b(t), a > 0,

then, for t ≥ 0, y(t) ≤ y(0)eat + eat
∫ t

0
b(u) du.

Proof. We note that this is equivalent to: e−at(y′(t) − ay(t)) ≤ b(t)e−at ⇒
d
dt (e

−aty(t)) ≤ b(t)e−at, thus y(t) ≤ y(0)eat + eat
∫ t

0
b(u)e−au du ≤ y(0)eat +

eat
∫ t

0
b(u) du.

5.2 Wide linear networks

Lazy regimes correspond to training regimes of neural networks in which the
neural network behaves as a linearization around its (random) initialization,
like a linear model. This is in particular the case when the width of the neural
network becomes arbitrary large, as we will see below.
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5.2.1 Neural Tangent Kernels (NTKs)

We will train a real-valued neural network without bias, using the NTK rescaling,
given for W = [W1, ...,WJ ] by:

Φ(W ;x) = WJ
1
√
wJ

ρWJ−1
1

√
wJ−1

ρ...ρW1
1
√
w1
x , (5.20)

where
√
w1, ...

√
wJ correspond to the input width of each respective layerW1, ...,WJ .

For instance w1 is equal to the dimension of x. We will also write Φj(W1...,Wj ;x) =
1√
wj
Wjρ...ρ

1√
w1
W1x s.t. Φ = ΦJ . We assume that our objective is to minimize

a risk R(Φ) as defined above, we thus consider:

d

dt
W (t) = −λ∇W

(
R ◦ Φ)(W (t)

)
(5.21)

where λ > 0 is some step size. The dynamic also writes:

d

dt
W (t) = −λ∂WΦ(W (t))T∇R(Φ(W (t))) , (5.22)

and we can introduce the Neural Tangent Kernel:

Definition 5.1 (Neural Tangent Kernel (NTK)). The NTK at W is an operator
of F defined by:

KW , ∂WΦ(W )∂WΦ(W )T . (5.23)

In this case, we have:

d

dt
Φ(W (t)) = −λKW (t)∇R(Φ(W (t)) . (5.24)

For the real valued case, assuming an underlying RKHS structure, we assume
that δx ∈ F , which implies that for any vector e ∈ Rp:

〈δx, ∂WΦ(W ).e〉F = ∇WΦ(W ;x)T e . (5.25)

Proposition 5.5. Assume that F is a RKHS. Then, KW is completely deter-
mined by x→ ∇WΦ(W ;x) and:

〈δx,KW δx′〉F = ∇WΦ(W ;x)T∇WΦ(W ;x′) . (5.26)

Proof. Using supra, we have:

〈δx,KW δx′〉F = 〈∂WΦT δx, ∂WΦT δx′〉
= ∇WΦ(W ;x)T∇WΦ(W ;x′) ,

and since this is true for any x, x′, we get the result.
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We can thus canonically abuse of the notationKW (x, x′) = ∇WΦ(W ;x)T∇WΦ(W ;x′),
as a real-valued kernel. We thus decide to denote:

Σ1(x, x′) =
1

w1
xTx′, (5.27)

and also:

Σj+1(x, x′) = E
(u,v)∼N (0,

[
Σj(x, x) Σj(x′, x)

Σj(x, x′) Σj(x′, x′)

]
)
[ρ(u)ρ(v)], (5.28)

and:
Σ̇j+1(x, x′) = E

(u,v)∼N (0,

[
Σj(x, x) Σj(x′, x)

Σj(x, x′) Σj(x′, x′)

]
)
[ρ̇(u)ρ̇(v)]] . (5.29)

We finally assume that for any depth j, (Wj)ab ∼ N (0, 1). We will need
the concept of Gaussian Process:

Definition 5.2 (Gaussian Process). A random process {f(x)}x∈X is a Gaussian
Process if and only if for any x1, ..., xn ∈ X , (f(x1), ..., f(xn)) is a multi-variate
Gaussian. In this case, f is completely determined by its kernel K, s.t. for
x, x′ ∈ X K(x, x′) = E[f(x)f(x′)].

We now provide an explicit equation of the NTK kernel at the initialization
when the widths of the layers grow to infinity, as done in [21]:

Proposition 5.6. If W (0) corresponds to the random parameters of a neural
network such that each entry is initialized as N (0, 1), in the infinite width limit,
we get

∃ lim
wJ→∞

...∃ lim
w2→∞

KW (0)(x, x
′)

law→ KNTK(x, x′) , (5.30)

(the convergence in law and the order of the limits are important), where KNTK

is deterministic. Furthermore, in this limit, ∀j,Φj(x,W (0)) is a Gaussian pro-
cess with covariance Σj(x, x

′). Finally, we have:

KNTK =

J∑
j=1

ΣjΣ̇j+1...Σ̇J . (5.31)

Proof. We show by recursion on the depth j that the j-th output and limiting
kernels are deterministic. For j = 1, the result is obvious as W1 is a projection
and:

=
1

w1
xTE[WT

1 W1]x′ = Iw2

1

w1
xTx′ = Iw2

Σ1(x, x′) . (5.32)

and KNTK(x, x′) = Σ1(x, x′)Iw2
is deterministic. It is clear that Φ1 is a Gaus-

sian process since it is constant in x. Assuming it’s true at rank J , we then get
at rank J + 1, by differentiation:

KW (0)(x, x
′) =

1

wJ+1
ρΦJ(x)T ρΦJ(x′)IwJ+2

(5.33)

+
1

wJ+1
WJ+1[∂ρ]ΦJ∂WΦJ(x)∂WΦJ(x′)T [∂ρ]TΦJW

T
J+1 (5.34)
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Note that [∂ρ]ΦJ is a diagonal matrix of size wJ+1. First, we note that:
ΦJ+1 = 1√

wJ+1
WJ+1ρΦJ , and E[ρ(ΦJx)T ρ(ΦJx

′)] = ΣJ+1(x, x′), by induction.

Furthermore, each (ΦJx)k is sampled from iid centered Gaussians: and thus
from central limit theorem (as the limit is independent from the activations),

1√
wJ+1

WJ+1ρΦJ tends in law to a Gaussian with expectation:

E[WJ,kρ(Φjx)k] = 0 .

By hypothesis and the law of large numbers, 1
wJ+1

(ρΦJ)T (ρΦJ)IwJ+2
→ ΣJ+1IwJ+2

,

∂WΦJ(x)∂WΦJ(x′)T →
∑J
j=1 ΣjΣ̇j+1...Σ̇JIwJ+1

. Furthermore, by induction

hypothesis 1
wJ+1

WJ+1[∂ρ]ΦJx[∂ρ]TΦJx′W
T
J+1 → Σ̇J+1(x, x′)IwJ+2

, and the law of

large numbers now for wJ+1 → ∞ combined to the inducion hypothesis leads
to:

1

wJ+1
WJ+1[∂ρ]ΦJ∂WΦJ(x)∂WΦJ(x′)T [∂ρ]TΦJW

T
J+1 → Σ̇J+1

( J∑
j=1

ΣjΣ̇j+1...Σ̇J
)
IwJ+2

.

(5.35)
Combining all the two equations allow to conclude.

Proposition 5.7. For ρ a ReLU non-linearity, KNTK restricted to Sd−1 is
positive definite.

Proof. See the exercise sheet.

5.2.2 Infinite width Neural Networks

Now, we will show that under a NTK rescaling, wide neural networks weights
do not move much from their initialization, and that the corresponding neural
network behaves essentially like its the linearization of its initialization. We’ll
need and use the following lemma:

Lemma 5.2. Fix w1,WJ+1. We have C > 0 such that for any w2, ..., wJ , if
ρ(0) = 0 and is Lipschitz then:

E[‖Φ(x;W (0))‖] ≤ C . (5.36)

Proof. Indeed, as for any vector x ∈ Rnj and Wj with iid standardized Gaus-
sians, we get ExWT

j Wjx = wj+1‖x‖2 and assumign ρ is L-Lipschitz:

E[‖Φ(x;W )‖]2 ≤ E[‖Φ(x;W )‖2] (5.37)

= E[‖ΦJ(x;W )‖2] (5.38)

= E[‖WJρΦJ−1x‖2] ≤ wJ+1E[‖ρ 1
√
wJ

ΦJ−1x‖2] ≤ wJ+1

wJ
wLE[‖ΦJ−1x‖2]

(5.39)

and we get the result by induction, as wJ+1 is constant.
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In this subsection, we assume all the layers have the same width w = wJ =
... = w2 and that w1 = 1 (it is just a constant rescaling factor anyway). We
also assume that that the learning rate is constant.

Proposition 5.8. We consider the setting of Sec. 5.1.3. Assume that λ
∫ T

0
‖∇R(Φ(W (t)))‖ dt =

O(1), as the layers grow. Assume that ρ is 1-Lipschitz. Then:

sup
t∈[0,T ]

‖KW (t) −KW (0)‖ = O(
1

w1/2
) (5.40)

Proof. For t ∈ [0, T ] and 1 ≤ j ≤ J , we have:

d

dt
Wj(t) = −λ 1√

w

(
∂ρTWjΦj−1

...
1√
w
WT
J−1∂ρ

T
ΦJ−1

1√
w
WT
J ∇R(Φ(W (t))

)
ΦTj−1 .

(5.41)
Here, an identification 〈a,Wb〉F = aT bW has been done. We introduce:

u(t) = (‖W1(t)−W1(0)‖+‖W1(0)‖, ..., ‖WJ−1(t)−WJ−1(0)‖+‖WJ−1(0)‖, ‖WJ(t)−
WJ(0)‖ + ‖WJ(0)‖) . From the assumptions, as ρ is 1-Lipschitz, we get for
J > j ≥ 1:

‖ d
dt
Wj(t)‖ ≤

λ0

w1/2

∏
k 6=j,k<J

‖Wk(t)‖√
w
‖‖WJ(t)‖‖∇R(Φ(W (t))‖

≤ 1

w(J−1)/2

(√∑
k 6=j

1

(J − 1)
‖Wk(t)‖2 + ‖WJ(t)‖2

)J−1‖∇R(Φ(W (t))‖

≤ C ′

w(J−1)/2
‖u(t)‖J−1‖∇R(Φ(W (t))‖

and for j = J :

‖ d
dt
WJ(t)‖ ≤ 1

w(J−1)/2
(

√∑
k<J

1

(J − 1)
‖Wk(t)‖2

J−1

‖∇R(Φ(W (t))‖

≤ C ′

w(J−1)/2
‖u(t)‖J−1‖∇R(Φ(W (t))‖

where C ′ > 0 is some constant which depends on J . In this case:

| d
dt

1

‖u(t)‖J−2
| ≤ J

|u(t). ddtu(t)|
‖u(t)‖J

≤ J
‖ ddtu(t)‖
‖u(t)‖J−1

≤ JC ′

w(J−1)/2
‖∇R(Φ(W (t))‖

(5.42)
Now, we know that | 1

‖u(0)‖J−2 − 1
‖u(t)‖J−2 | = O( 1

w(J−1)/2 ), thus, as 0 < ‖u(0)‖ is

bounded, we get that ‖u(t)‖ is bounded. It implies in particular that for j ≤ J ,
we can find C̃ > 0 such that:

d‖Wj(t)−Wj(0)‖
dt

≤ ‖ d
dt
Wj(t)‖ ≤

C̃

w(J−1)/2
‖∇R(Φ(W (t)))‖
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Now, we see we can upper bound each ‖Wj(t) − Wj(0)‖ by C̃
w(J−1)/2 . To

conclude simply note ∂WJ
Φ has bounded variations w.r.t. to parameters.

Now, since ‖uuT − vvT ‖ = ‖(u+ v)(v−u)T ‖ ≤ (‖u‖+‖v‖)‖u− v‖, we have:

sup
t∈[0,T ]

‖KW (t) −KW (0)‖ = O(
1

w1/2
) . (5.43)

Remark 5.2. This proposition implies in particular that ‖K(W (t))−K(W (0))‖ →
0. Observe that this model has an implicit rescaling Φ′ = 1

w
J−1

2

Φ.

This seems to imply that the dynamic of an infinite width neural networks
is linear. Let’s go further and consider:

d

dt
Φt = −λ∂W (Φ(W (0))∂W (Φ(W (0))T∇R(Φt) (5.44)

which is well-defined because KW (0) is continuous from Prop. 5.6. Then:

Proposition 5.9. For a given t ∈ [0, T ], we have that:

sup
t
|Φt − Φ(W (t))| = O(

1

w1/2
) (5.45)

Proof. Write ∆(t) = ‖Φt − Φ(W (t))‖. We note that:

d

dt
∆(t) ≤ λ‖KW (0)∇R(Φt)−KW (t)∇R(Φ(W (t)))‖

≤ λ‖(KW (t) −KW (0))∇R(Φ(W (t)))‖+ λ‖KW (0)‖L‖Φt − Φ(W (t))‖
≤ λ‖∇R(Φ(W (t))‖+ C ′∆(t)

Thus, from Lemma 5.1:

∆(t) = O(
1

w1/2
) (5.46)

In other words, the asymptotic dynamic of this randomly initialized Neural
Network is linear. Indeed, take for instance R(Φ) = EX ‖Φ−Φ∗‖2 s.t. ∇R(Φ) =
Φ − Φ∗, which satisfies the assumption of Prop. 5.8. Then it’s clear that 5.44
is of type d

dtΦ
t(x) = A(Φt − Φ∗) for A some linear operator, whose solution is

given by Φt(x) = Φ∗+etA(Φ0−Φ∗), and the convergence is clear at the moment
that A has a positive spectrum. This is in particular the case if A is given by
Prop. 5.7.
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5.3 Lazy training

We have found out that wide neural networks, under the NTK renormalization,
behave like a kernel defined by by their initialization. It is possible to deduce a
more general property. Indeed, we note that the previous formulation writes:

d

dt
W (t) = −λ∇W (R ◦ (

1
√
wJ

Φ))(W (t)) (5.47)

with the initialization WJ ∼ N (0, IwJ ). We note that during training, each step
size is rescaled by a constant factor 1√

wJ
. We have observed that letting wJ

growing leads to an optimization path that is dominated by the initialization, via
a renormalization phenomenon. We will show this phenomenon is not specific
to NTK, and to do so, we introduce the linearization of Φ (of its parameters)
around the initialization:

Φ̄(W ) = Φ(W (0)) + ∂WΦ(W (0))T (W −W (0)) . (5.48)

We will show that the variation of the loss can be huge compared to the
variations of the weight of the neural network. This can be intuitively quan-
tified, via the first iteration step W1 = W0 − λ∇(R ◦ Φ)(W0) along a discrete
optimization path. Note that the linearization around W1 and W0 remains close
if:

Φ(W1) + ∂WΦ(W1)T (W −W1) ≈ Φ(W0) + ∂WΦ(W0)T (W −W0) . (5.49)

This implies in particular that the order 1 coefficient, ∂WΦ(W1)−∂WΦ(W0),
must remain small, which is quantified via a 2nd order approximation:

∂WΦ(W1)− ∂WΦ(W0)

∂WΦ(W (0))
∼ λ‖∇W (R ◦ Φ)(W0)‖ ‖HΦ(W0)‖

‖∂WΦ(W0)‖
. (5.50)

It has to be small, compared to the variations of the loss:

R(Φ(W1)−R(Φ(W0))

R(Φ(W0))
∼ λ‖∇(R ◦ Φ)(W0)‖2

R(Φ(W0))
. (5.51)

Note that we assumed here that W0 is not a local minimum. For instance, in the
case of the MSE-loss R(Φ) = 1

2‖Φ− Φ∗‖2, this leads to the informal criterium:

κΦ(W0) = ‖Φ(W0)− Φ∗‖ ‖HΦ(W0)‖
‖∂WΦ(W0)‖2

� 1 . (5.52)

Note that if Φ(W0) = 0, it is possible to set a model in its lazy regime simply
via a rescaling, as shown by the following quantity which can be arbitrary small:

καΦ(W0) =
1

α
‖Φ∗‖ ‖HΦ(W0)‖

‖∂WΦ(W0)‖2
. (5.53)

In the case of a 1-hidden layer neural network, this can be explicitely mea-
sured:
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Proposition 5.10. Assume that ∀f ∈ F , ‖f‖∞ ≤ ‖f‖, W = (w1, ..., wn), and:

Φ(W ;x) = α(n)

n∑
i=1

ϕi(x;wi) (5.54)

Assume that each ϕi is i.i.d. with finite variance and 0-mean, s.t. | ∂
2

∂2wϕi(x;w))| ≤
L. Assume that 0 6= | ∂∂wϕi(x;w0))| on some neighborhood of some w0. Then
there exists c s.t.:

E[κΦ(W )1‖∇Φ(W )‖>0] ≤ c

α(n)n
(5.55)

Proof.

E[‖Φ‖2] ≤ α2(n)
n∑
i=1

E[‖ϕi‖2] = nα2(n)E[‖ϕ0‖2] (5.56)

Then, under the spectral norm(which as seen in Sec. 2 is tighter than others),
we get:

‖HΦ(W )u‖2 = uTHΦ(W )THΦ(W )u = α2(n)
∑
i

u2
i ‖
∂2

∂2
w

ϕ(.;wi)‖2 ≤ α2(n)L2‖u‖2

(5.57)
furthermore, as ϕi is at least piece-wise continuous along w, we get ‖ ∂

∂wϕ(., w)‖ supx | ∂∂wϕ(x,w)| ≥
c for w ∈ Ω with P(Ω) > 0 (we write W ∈ Ωn the event ∀i,Wi ∈ Ω). Con-
sequently, we obtain: ‖∇Φ(W0)‖2 ≥ nα(n)2c Combining this and with the
triangular inequality and Cauchy-Schwartz, we get:

E[κΦ(W )1‖∇Φ(W )‖>0] ≤ nα2(n)LE[‖ϕ0‖2]

α2(n)c2n2
+
‖Φ∗‖α(n)L

α2(n)c2n
(5.58)

and this leads us to the result.

The main focus of this proposition corresponds to a neuron ϕ(x,w) =
w1 max(0, w2Tx + w3), which is 2-homogeneous in w and satisfies the condi-
tion above. Then, rescaling the variance of the initialization W0 by λ leads to
a rescaling factor of λ2. In the NTK regime, we actually had α(n) = 1√

n
, thus

we were indeed in a lazy regime. We shed more light on the lazy regime by
considering the rescaled loss:

Rα(Φ) =
1

α2
R(αΦ) , (5.59)

where the rescaling factor α is a normalization factor that allows to set a given
model in its lazy regime, asymptotically as α → ∞. We also consider the
rescaled dynamic (λ is constant!):

d

dt
Wα(t) = −λ∇W (Rα ◦ Φ)(Wα(t)) , (5.60)
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which also writes, for the rescaled function: Φα(t) = Φ(Wα(t)):

d

dt
Φα(t) = −λ

α
∂WΦ(Wα(t))∂WΦ(Wα(t))T∇R(αΦα)

= −λ
α
KWα(t)∇R(αΦα) ,

as well as the rescaled linearized dynamic:

d

dt
W̄α(t) = −λ∇W (Rα ◦ Φ̄)(W̄α(t))) (5.61)

Here, we will only need that Φ is a.s. differentiable with differentiable locally-
lipschitz, R is also differentiable and L-smooth.

Proposition 5.11. Assume that Φ(W (0)) = 0, then for any fixed time horizon
T > 0, supt∈[0,T ] ‖Wα(t) −W (0)‖ = O( 1

α ), supt∈[0,T ] ‖Wα − W̄α(t)‖ = O( 1
α2 )

and supt∈[0,T ] ‖Φ(Wα(t))− Φ̄(W̄α(t))‖ = O( 1
α2 ).

Proof. The first part of the equation is obtained by using Prop. 5.4 and noting
that Rα(Φ(W0)) = 1

α2R(0). Next, let ∆(t) = ‖Φ(Wα(t))− Φ̄(W̄α(t))‖, then:

d

dt
∆(t) ≤ λ

α

∥∥KWα(t)R′(αΦα)−KW (0)R′(αΦ̄α)
∥∥

≤ λ

α

∥∥KWα(t)∇R(αΦα)−KW (0)R′(αΦα)
∥∥

+
λ

α

∥∥KW (0)∇R(αΦα)−KW (0)∇R(αΦ̄α)
∥∥

Then, we note that∇R(αΦα) ≤ L‖Φ(Wα(t))−Φ(W (0))‖+|∇R(0)| ≤ c
α+c′ be-

cause Φ is Lipschitz on a compact surrounding the trajectory of Wα. Similarly,
W → KW is Lipschitz on this set for the same reason. Then, we conclude:

d

dt
∆(t) ≤ c′

α2
+ ∆(t) (5.62)

As ∆(0) = 0, we conclude that ∆(t) = O( 1
α

2
) thanks to Lemma 5.1. Finally,

bounding d
dt‖W

α− W̄α(t)‖, where the analysis before have shown all the terms
in the norm are bounded, thus integrating leads to the conclusion.
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Chapter 6

Generalization properties of
(deep) Neural Networks

In this chapter, we discuss the generalization properties of neural networks via
complexity bounds. We follow mainly the works of Bartlett [5, 6], and we simply
simplify the exposition of several proofs, in the case of ReLU Neural Networks
without bias. We will be mainly interested in two complexity measures: the
VC dimension, which is function dependent, and the Rademacher complexity,
which is data dependent.

6.1 Statistical learning reminders

6.1.1 Bias-variance decomposition

We now discuss the generalization property of Neural Networks, and in partic-
ular how to relate the empirical error to the estimated error. We introduce the
expected risk:

R(Φ) = EX,Y
[
`(ΦX,Y )

]
, (6.1)

as well as its empirical risk, for iid samples (Xi, Yi),

Rn(Φ) =
1

n

∑
i≤n

`(ΦXi, Yi) . (6.2)

Clearly, the empirical risk is an unbiased estimator of the expected risk. We
are always interested in finding models Φ which minimize the expected risk, and
typically we estimate a model via the empirical risk. We consider Φ̃ ∈ F and
we assume that Rn(Φn) = infΦ̂Rn(Φ̂) and R(Φ∗) = infΦR(Φ), we then bound,
similarly to [8], the expected risk of our model from the minimal expected risk,
which measures the generalization properties of Φ̃:

R(Φ̃)−R(Φ∗) = R(Φ̃)−R(Φn)
Optimization error

+ R(Φn)−R(Φ∗)
≥0,Estimation error

. (6.3)
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The estimation error measures the error due to minimizing the empirical risk
rather than the expected risk. We assume that the optimization error is small
enough to be neglectible. Then, we upper bound the estimation error:

R(Φn)−R(Φ∗) = R(Φn)−Rn(Φn) +Rn(Φn)−Rn(Φ∗) +Rn(Φ∗)−R(Φ∗)

≤ 2 sup
Φ
|R(Φ)−Rn(Φ)| ,

because Rn(Φn) ≤ Rn(Φ∗). Next, we get the generalization error via:

E[R(Φn)−R(Φ∗)] ≤ 2E[sup
Φ
|R(Φ)−Rn(Φ)|] . (6.4)

Now we can take the expectation on the Eq. (6.3). Our goal is to refine this
generalization bound in the case of neural networks.

6.1.2 Estimation Error

We now discuss how to deal with the estimation term error. We first note that:

E[ sup
Φ∈F
|Rn(Φ)−R(Φ)|] = EXi [ sup

Φ∈F

∑
n

1

n
|
n∑
i=1

EX̃i [`(Φ, Xi)− `(Φ, X̃i)]|] . (6.5)

where {Xi, X̃i}i are independent. Now, let ε1, ..., εn be some iid Rademacher
variables, such that εi(`(Φ, Xi)− `(Φ, X̃i)) has same law as `(Φ, Xi)− `(Φ, X̃i).
We get:

E[ sup
Φ∈F

∑
n

1

n
|
n∑
i=1

EX [`(Φ, Xi)− `(Φ, X)]|] ≤ 2

n
E[ sup

Φ∈F
|
n∑
i=1

εi`(Φ, Xi)|] . (6.6)

Then fix Xn
1 = X1, ..., Xn, we get a standard upper bound, assuming that ` is

L-Lipschitz and Φ ∈ F iff −Φ ∈ F , we will show that it is possible to employ a
simpler complexity measure that does not involve `:

Eεi [ sup
Φ∈F
|
n∑
i=1

εi`(Φ, Xi)|] = E[ sup
Φ∈F

n∑
i=1

εi`(Φ, Xi)]

=
1

2
(E[ sup

Φ∈F

n∑
i=1

εi`(Φ, Xi)|εn = 1] + E[ sup
Φ∈F

n∑
i=1

εi`(Φ, Xi)|εn = −1])

= E[ sup
Φ,Φ̃∈F

`(Φ, Xn)− `(Φ̃, Xn)

2
+

n−1∑
i=1

εi(`(Φ, Xi) + `(Φ̃, Xi))]

≤ E[ sup
Φ,Φ̃∈F

L|ΦXn − Φ̃Xn|
2

+

n−1∑
i=1

εi(`(Φ, Xi) + `(Φ̃, Xi))]

= E[ sup
Φ,Φ̃∈F

LΦXn − LΦ̃Xn

2
+

n−1∑
i=1

εi(`(Φ, Xi) + `(Φ̃, Xi))]

≤ ...
≤ LRad(F|Xn1 )
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where we have used the Rademacher complexity defined by:

Definition 6.1. For a n-tuple of variables and a functional class F , the Rademacher
complexity of Xn

1 , (X1, ..., Xn) is given by:

Rad(F|Xn1 ) = Eεi [| sup
Φ∈F

n∑
i=1

εiΦXi|] . (6.7)

The Rademacher complexity measures the richness of F , in particular it is
worth introducing:

Definition 6.2. For a n-tuple of variables and a functional class F , the Rademacher
complexity of F is given by:

Radn(F) = E(Xi,εi)[ sup
Φ∈F
|
n∑
i=1

εiΦXi|] . (6.8)

6.2 Measures of complexity

For the sake of simplicity, we will consider neural networks without biases,
which simplifies the formalisms of the proofs, without losing much in gener-
ality. Consequently, our Neural Networks of depth J can be written: Φx =
WJρWJ−1ρ...ρW1x, where ρ is a ReLU and W1, ...,WJ some linear layers. We
employ the same formalism as in Chapter 5.

6.2.1 Rademacher complexity

In this section, we remind some basic properties of the Rademacher complexity.

Definition 6.3 (SubGaussian processes). Fix (T, ‖.‖), then (Xt)t is a Sub-
gaussian process, if for any t ∈ T, EXt = 0 and Xt1 − Xt2 is ‖t1 − t2‖2-
SubGaussian for any t1, t2 ∈ T .

We remind that N (T, ε, ‖.‖) is the smallest number of ε-ball for the norm
‖.‖ needed to cover T (also said ε-net). We have the following standard result:

Lemma 6.1 (Dudley’s entropy). Let (Xt)t∈T be a sub-Gaussian process for
(T, ‖.‖), assume that D = supt1,t2∈T ‖t1− t2‖ <∞, then there exists a universal
constant C > 0:

E[ sup
t1,t2∈T

(Xt1 −Xt2)] ≤ C
∫ D

0

√
logN (T, ε, ‖.‖)dε . (6.9)

Proof. See the proof in [38].

We further note that Xf = 1√
n

∑
i≤n εif(xi) is a centered sub-Gaussian

process for ‖f‖ = supx∈X |f(x)|, as by independence:

Eεieλ(Xf−Xg) =
∏
i

Eεi [e
λεi√
n

(
f(xi)−g(xi)

)
] ≤ eλ

2

2n

∑n
i=1 |f(xi)−g(xi)|2 ≤ eλ

2 ‖f−g‖2
2 ,

(6.10)
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where we used coshx ≤ e
x2

2 . This implies in particular that if D = 2 sup ‖Xi‖,
then by application of the Lemma 6.1 we have:

E[Radn(F|Xn1 )] = E[sup
f∈F

1

n

∑
i≤n

εif(Xi)] ≤
C√
n

∫ D

0

√
logN (T, ε, ‖.‖)dε . (6.11)

We have the following generalization bound, that we incorporate here for
the sake of illustration:

Proposition 6.1. With probability 1 − δ, assuming that F ⊂ [0, 1]X , we can
upper bound the generalization error via:

sup
Φ∈F
|Rn(Φ)−R(Φ)| ≤ 2LRadn(F) + L

√
2

ln 1
δ

n
(6.12)

Proof. Indeed, from Sec. 6.1.2, we know that

sup
Φ∈F
|Rn(Φ)−R(Φ)| ≤ 2LRad(F|Xn1 ) (6.13)

and we further note that, if X̃n
1 = (X1, ..., X̃i, ..., Xn), then because the functions

are bounded by 1:

Rad(F|Xn1 )−Rad(F|X̃n1 ) ≤ 1

n
, (6.14)

Thus, we can apply McDiarmid concentration inequality [38] and we get:

Rad(F|Xn1 ) ≤ EXiRad(F|Xn1 ) +

√
ln 1

δ

2n
. (6.15)

Combining those bounds allows to conclude.

6.2.2 Vapnik-Chervonenkis (VC) dimension

The VC dimension is an explicit measure of the ability of a functional set to
shatter n points:

Definition 6.4. The VC dimension of a functional set F ⊂ {−1, 1}X is the
largest n s.t.

sup
(a1,...,an)

#{
(
f(a1), ..., f(an)

)
, f ∈ F} = 2n . (6.16)

We denote the VC dimension as dim VC(F).

We first remind a relation between the VC dimension and the Rademacher
complexity, for {−1, 1} valued functions.

Proposition 6.2. We have Radn(F) =

√
2dim VC(F) log en

dim VC(F)

n .
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Proof. We apply successively the two lemma below, since the diameter is at
most

√
n

Eε[
1

n
sup
Φ∈F

n∑
i=1

εiΦ(xi)] ≤ Eε[
1

n
sup

(ai)=(Φ(x1),...,Φ(xn))∈{−1,1}n

n∑
i=1

εiai]

≤

√
2dim VC(F) log en

dim VC(F)

n

Lemma 6.2 (Sauer’s Lemma).

sup
(x1,...,xn)

#{
(
f(x1), ..., f(xn)

)
, f ∈ F} ≤ (

en

dim VC(F)
)dim VC(F) . (6.17)

Proof. See [].

Lemma 6.3 (Massart Lemma). Let A be a finite subset and assume r =
supa∈A ‖a‖, then:

Eε[
1

n
sup
a∈A

n∑
i=1

εiai] ≤
r
√

2 log |A|
n

. (6.18)

Proof. See [].

Remark 6.1. It is also possible to obtain generalization bounds without using
the Rademacher complexity yet the VC dimension, see [].

Now, we are ready to address the problem of computing the VC dimension
of a standard Multi-Layer Perceptron with ReLU non-linearity. The following
lemma will be the core of our proof:

Lemma 6.4. Let P1[X1, ..., Xn], ..., Pm[X1, ..., Xn] multinomials of degree d
with n ≤ m . Then, for all a ∈ Rn:

#{
(
sign (P1(a)), ..., sign (Pn(a))

)
, a ∈ Rn} ≤ 2(

2emd

n
)n . (6.19)

Proof. We admit this Lemma but a proof can be found in [].

The main idea is to find a sign-invariant partition of the parameters of the
neural network. This partition not being shatterable, its size will give a (pes-
simistic) upper bound on the VC-dimension of the feed-forward neural network.

Theorem 6.1 (Adapted from Bartlet, see [6].). Consider the feedforward neural
networks with J (hidden) layers of width at most K, and ReLU non-linearity,
then, writing F = {x→WJρWJ−1ρ...ρW1x} their set:

dim VC(F) ≤ O(K2J2 log(KJ2)) (6.20)
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Proof. Fix (x1, ..., xm). We will consider Θj , the subset of parameters to parametrize
Φj(., θ), θ ∈ Θj . Let’s assume we have obtained a partition

Θj
1...Θ

j
nj such that ∀q,∀k, ∃Pq,k : ∀θ ∈ Θj

i , Pq,k(θ) = [Φj(xk, θ)]q, and

∀θ ∈ Θj
i ,
(
sign([Φj(x1; θ)]1, ..., sign([Φj(xk; θ)]1),

..., sign([Φj(x1; θ)]K , ..., sign([Φj(xk; θ)]K)
)

= constant

Then, at rank j + 1 < J , we consider Θj
i and we partition {(θ, η) ⊂ Θj+1 : θ ∈

Θj
i} in {ηp}p such that ∀q, k, ∃Pq,k : Pq,k(θ, η) = [Φj+1(xk, (θ, η))]q,∀η ∈ ηj . We

note that for θ fixed, there is a bijection between {ηp} and

{(sign([Wj(η)Φj(x1; θ)]1, ..., sign([Wj(η)Φj(xk; θ)]1), ..., sign([Wj(η)Φj(x1; θ)]K , ...,

sign([Wj(η)Φj(xk; θ)]K)
)
} ⊂ {−1, 1}Km

because for q ≤ K [Wj(.)Φj(xk; .)]q is a polynomial (of degree j+1, in K2(j+1)
variables) and the ReLU ρ set to 0 negative values. It implies by the Lemma
6.4, that:

nj+1 ≤ nj2(
2eKm(j + 1)

K2(j + 1)
)K

2(j+1) . (6.21)

Now, the only difference between the intermediary layers and the final layer
is the output dimension (which is 1), thus the sign partition has cardinality n
given, at most, by:

n ≤ nJ2(
2em(J + 1)

K2J +K
)K

2J+K (6.22)

As n0 = 1, this leads to:

nJ ≤ 2J(
2em

K
)

1
2K

2J(J+1) (6.23)

Thus with a logarithm in base 2,

log n ≤ (J + 1) + (
3

2
K2J +K +

K2J2

2
) log(

2em

K
) + (K2J +K) log(

J + 1

K2J +K
) .

(6.24)
Now, we find an upper bound of the VC dimension. Finding the smallest n such
that our model can not shatter the m points (x1, ..., xm) leads to finding the
smallest n s.t. n = 2m is smaller than the right term of Eq. (6.24) and the VC
dimension can not be larger than log n. We will use the following lemma:

Lemma 6.5. x ≤ a+ b log x⇒ x ≤ 2(a+ b log b).

By direct application of this lemma, m can not be larger than:

m ≤ J + 1 + (
3

2
K2J +K +

1

2
K2J2) log(eKJ2) + (K2J +K) log(

J + 1

K2J +K
)

= O(J +K2J2 log(KJ2)).
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Unfortunately, combining with 6.2, the quantity obtained in this bound re-
mains still large if we apply it directly to state-of-the-art neural networks. In
the next subsection we propose to refine this bound.

6.2.3 Spectral Norm-based bounds

We now propose a different proof directly inspired from [5]. We however simplify
our setting because we restrict ourself to `2-norm bounds. For some X , we
introduce ‖f‖X = supx∈X ‖f(x)‖ and κ = diam (X ). We will now propose a
bound on the sample complexity of neural networks: the idea will be to compute
an ε-covering of the parametrization of our neural network, and to combine it
with Eq. (6.11). Our bound will then highlight a quantity that depends on the
spectral norm of the layers W1, ...,WJ : we will restrict our analysis to models
such that ‖Wj‖ ≤ αj for some predefined αj .

Proposition 6.3. Let ε > 0 and consider FJ = {ΦJ = WJρW...ρW1, ‖Wj‖ ≤
αj , j ≤ J} then:

N (FJ , ε, ‖.‖X ) ≤
J−1∏
j=0

sup
Φj∈Fj

N ({Wj+1ρΦj , ‖Wj+1‖ ≤ αj+1}, εj , ‖.‖X ) , (6.25)

where εj = 2j−Jε∏
J≥i>j+1 αi

for 0 ≤ j ≤ J − 1.

Proof. We prove this result by induction on the depth J . For J = 1, as Φ0 = I,
the result is true with ε0 = 1

2ε. Assuming the formula is true at rank J , we
consider a covering of {WJ+1ΦJ ., ‖WJ+1‖ ≤ αJ+1} = ΓΦJX (for εJ = 1

2ε) and

of FJ(for ε̃J+1 = ε
2αJ+1

), thus we can find W̃J+1 ∈ ΓΦJX and Φ̃J ∈ FJ , such

that for all i ≤ n:

‖ΦJ+1Xi − W̃J+1ρΦ̃JXi‖ ≤ ‖W̃J+1ρΦJXi −WJ+1ρΦJXi‖+ ‖W̃J+1‖‖ΦJXi − Φ̃JXi‖
≤ εJ + ε̃JαJ+1 = ε

By induction, this is obtained for the right term for εj = ( 2j−J∏
J≥i>j+1 αi

)( ε
2αJ+1

) =

2j−J−1ε∏
J+1≥i>j+1 αi

, 0 ≤ j ≤ J−1. We note that {W̃J+1, Φ̃J} provides a covering with

desired cardinality of FJ+1, leading to the result.

Now, from this proposition, we see it is enough to bound:

N ({W., ‖W‖ ≤ α}, ε, ‖.‖X ) . (6.26)

This is done by the following proposition:

Proposition 6.4. Assuming ‖Xi‖ ≤ C,∀i, we have for α > 0:

N ({W., ‖W‖ ≤ α}, ε, ‖.‖X ) ≤ (3Cα)K
2

εK2 . (6.27)
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Proof. We note that:
‖WXi‖ ≤ ‖W‖C (6.28)

Thus, we can consider a covering with radii ε
C of the ball Bα for ‖.‖, given the

ambient dimension is K2, this leads to the bound (see [38]):

N ({W., ‖W‖ ≤ α}, ε, ‖.‖X ) ≤ (3Cα)K
2

εK2 . (6.29)

Remark 6.2. This bound is extremely naive, and [5] shows it is possible to
obtain tighter inequalities via more carefully chosen ε-net, notably with a `1− `2
type bound.

Proposition 6.5. Writing S =
∏

1≤j≤J αj and again FJ = {ΦJ = WJρW...ρW1, ‖Wj‖ ≤
αj , j ≤ J}, we have:

Radn(FJ) = O(
SK
√
J(
√
J logS + 1)√
n

) (6.30)

Proof. Combining all those bounds, we get:

Radn(FJ) ≤ C√
n

∫ κS

0

√
log(N (FJ , ε, ‖.‖X )dε

≤ C√
n

∫ κS

0

√√√√J−1∑
j=0

log(N ({Wj+1Φj , ‖Wj+1‖ ≤ αj+1}, εj , ‖.‖X )dε

≤ C√
n

∫ κS

0

√√√√J−1∑
j=0

K2 log(3κα1...αjαj+1/εj)dε

≤ C√
n

∫ κS

0

√√√√J−1∑
j=0

K2 log(
3κS

2j−Jε
)dε

=
CK√
n

∫ κS

0

√
J log(3κS)− J(J − 1)/2 log 2− J log(ε)dε

= O(
κSK(

√
J +
√
J logS + J +

√
J log(κS) + 1)√

n
)

Compared naively to the previous bound obtained in Prop. 6.4 and Prop.
6.1, we see that if S � 1, then this bound is better. Yet it is unclear if this is
systematically true.

68



Acknowledgements

I would like to thank much Mathieu Andreux, Lénäıc Chizat, Michael Eick-
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[27] Stéphane Mallat. Understanding deep convolutional networks. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, 374(2065):20150203, 2016.

[28] Keihachiro Moriyasu. An elementary primer for gauge theory. World Sci-
entific, 1983.

71



[29] Edouard Oyallon, Eugene Belilovsky, Sergey Zagoruyko, and Michal Valko.
Compressing the input for cnns with the first-order scattering transform.
In Proceedings of the European Conference on Computer Vision (ECCV),
pages 301–316, 2018.

[30] Richard S Palais. Natural operations on differential forms. Transactions of
the American Mathematical Society, 92(1):125–141, 1959.
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