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** High Dimensional classification
(25, y;) € R%2 x {1,...,100},i = 1...10* — §(x)?

Training set to
predict labels
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Translation

X y |z —yll2 =

@ Rotation @

Y

v
Averaging is the key

to get invariants

High dimensionality issues
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Fighting the curse of
dimensionality

Geometric variability Class variability

Groups acting on images:

translation, rotation, scaling . .
Intraclass variability

. - . e

Other sources : luminosity, occlusion, Extraclass Varlablllty

small deformations ‘

r-(u) =x(u—7(u)),7€C™
T I—T>)
\

Can be carefully handled Needs to be learned

o Py — [ Ox > Classifier
L = L reduces class variability
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Existing approach

Ref.: Discovering objects and their
location in images . Sivic et al.
High-dimensional Signature Compression
for Large-Scale Image Classification, Perronnin et al.

* Unsupervised learning: Bag of Words, Fisher

Vector,... (21, N} — O

* Supervised learning: Deep Learning,...

{(z1,11), ..., (xN,yN)} — LD

* Non learned: HMax, Scattering Transform.

{ G 1 } H @ Ref.: Robust Object Recognition with
’ o o o

Cortex-Like Mechanisms. Serre et al.
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DeepNet?

It is a cascade based on a lot of linear operators

followed by non linearities.

Ref.: Rich feature hierarchies for accurate
object detection and semantic
segmentation. Girshick et al.

Convolutional network and

E aCh Op erator j_S SupeI‘Visedly le arned applications in vision. Y. LeCun et al.

Sort of “Super SIFT”

State-of-the arts on ImageNet and most of the

SIFT+FV DeepNet

benchmarks. 100

% accuracy

90

80

70

60
2010 2011 2012 2013 2014 2015

human

Ref.: image-net.org



http://image-net.org
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Complexity of the
architecture

Requires a huge amount of data

Need many engineering to select the hyper
parameters and to optimise it

Interpreting the learned operators is hard when
the network is deep(i.e. more than 3 layers)

Ref.: Intriguing properties of neural networks, C. Szegedy et al.

Few theoretical results, yet outstanding
numerical results.
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architecture

Operators of a Deep

* Linear operators are often convolutional whose

kernels are small filters.

zj(u, A2) = ij 1(5 A1) * o (w)) — o

1

 Deep.

 /is often a ReLu: z — max(0, m)/

* Sometimes “pooling” which leads to a down

sampling.

J

= f(Fjzj1)

Contains a phase information
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Classifier

S “\ " l"‘.‘ 3 3‘ .
| S, \ 3 V ,\. r |. l 3
| e FN |
s ) S 192 192 128 2048 \/ 20ag \dense
,7 128 T e
5 < N
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B s == 31 WP SV 13 dense | [dense
" . l 3| .. A\l 1000
. 192 192 128 Max
: : 2048 204
\{[Strid Max 128 Max pooling 048
Uof 4 pooling pooling
3 a8 Ref.: ImageNet Classification with

Deep Convolutional Neural Networks.
DeepNet ‘ ‘ Ork A Krizhevsky et al.
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Does everything need to be

?
A Scattering Net!v%x%lislgedgﬁ architecture,

where all the filters are predefined.

Ref.: Invariant Convolutional Scattering Network,
J. Bruna et Mallat S

We challenge the necessity to learn the weights
of every filters of a deep architecture.

Scattering gets state-of-the-art results on
unsupervised learning for some complex

d at a S et S . Ref.: Deep Rototranslation Scattering Network

for complex Image Recognition, EO, S Mallat

We highlight the similarity of the Scattering
Network with the DeepNet architectures.
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Desirable properties of a representation

* Invariance to group G of transformation

Vr,Vg € G, P(g.x) = ®(x)

A

X

» Stability to noise —°

v,y |(z) — 2(y)|l2 < llz — yll2

* Reconstruction properties

O ()
y=®(r) <=z =>"1(y)

 Linear separation of the different classes
Vi 7 J, | E(®(X;)) — E(®(X;))[2 > 1

\V/i, O'((I)(X@)) <1
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oS Success story
Scattering for Textures&Digits

* Non-learned representation have been

successively used on:

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

* Digits (patterns): ¥ H 4« 4+ ¢ ¥ 44
Ss5s498§858S55€¢
2207217771
%XSJ’QKIBYXJ

Small deformations
Rotation+Scale

+Trans£ation

* Textures (stationary process):

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L. and Mallat S.

* However all the variabilities(groups) here are

perfectly understood.
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Wavelets

Wavelets help to describe signal structures. % is a

wavelet iff
Y € L2(R?,C) and 4, ¥(u)du = 0
Learned in the first layers of a DeepNet.Dfee;-:ImageNet Classification with

Convolutional Neural Networks.
A Krizhevsky et al.

Wavelets can be dilated in order to be a multi-scale

representation of signals, rotateﬂ to describe
V5.0

rotations. 1 ro(u) »
Vio = oo, ¥(—5) W8 4

Design wavelets selective to an informative

variability:. A
| w ‘ Non-Isotropic

» U ys -




(for sake of simplicity, formula
are given in the isotropic case)
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The Gabor wavelet
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Wavelet Transform

ENS

* Wavelet transform : Wz ={z %19, 2% }0 i<

AW?2
 Isometric and linear operator, with . - g
Wal? = 3 [losvial+ [oxd Wt
0,7<J - 1
* Covariant with translation N -
W(2r—c) = (Wa)r— ye
* Nearly commutes with the action of
diffeomorphism Ref: Group lnvariant Scattering, Malat

W, Al < Cf[VT|
* Why wavelets are not enough? Invariance...
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“s Filter bank implementation

of a Fast WTI' ......

* Assume it is possible to find & and 9 such that
Uow) = —sio(5)i(3)  and o) = —sh(5)0(3)
* Set:
zi(u,0) =zx¢;j(u) =h*(xx¢;—1)(2u) and

xj(u,0) =z xj0(u) = go* (z*¢;-1)(2u)

* The WT is then given by Wz = {z,(.,0),25(.,0)};< 70

* A WT can be interpreted as a deep cascade of

linear operator, which is approximatively verified
for the Gabor Wavelets.
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There is an oversampling h >0

Deep implementation of a WT
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Scattering Transform

* Scattering transform at scale / is the cascading of

! .,'
|14

ENS

complex WT with modulus non-linearity, followed

Ref.: Group Invariant Scattering, Mallat S
by a low pass-filtering:
SjT = {33*¢J7 with A; = {Ji,0i},5i < J
Tk P, | * P,

T x x| %V, | * Or}

Depth
N

* Mathematically well defined for a large class of

wavelets.
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For people into computer vision:

SIF'T performs a histogram of gradient

Gradient

he)= > lg—"

Z£g€(0,0+n]

= > |1 1.4¢(0,0+m9]]
g

=

Quantification... th‘.flj * ’gbg‘ * @

The averaging leads to a loss of information...

Relations with SIFT
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5 Feature map

1st order
coefficients

Example of Scattrin coefficients
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Properties

Non-linear

Isometric
|Ssx|| = ||z
Stable to noise
|S5x — Syl < ||z —y
Covariant with translation
SJ('CET:C) — SJ(I)T:C
Invariant to small translation
c] <27 = Sy (z,—c) = Sy(x)

Ref.: Group Invariant Scattering, Mallat S

allow a linear classifier
to build class invariant

Sensitive to the action of rotation
Sy(rex) # S ()

Linearize the action of small deformation
|Syzr — Syl < Cf|VT|

ReCOnStTUCthn propertles Ref.: Reconstruction of images scattering

coefficient. Bruna J

on informative variability
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Parameters&dimensionality
of the Scattering

For 256x256 images, &z € RO

Yet it is possible to reduce it up to Ldx € R*""

It depends on a few parameters [, J, the shape
of the mother wavelet...

Identical parameters can be chosen for natural

N\

It is a generic representation

images on different datasets.



O Modulus h >0 Scattering coefficients

are only at the output

2nd order Translation Scattering
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Affine Scattering Transform

Observe that | W| is covariant with the affine group Aff(E):

WIA(g.2) = |(g.7) x| = [W]|g.\]z

Ref.: PhD, L Sifre

See | W| as a signal parametrised by some elements of the
affine group:

[z j0(u)| = 2(g), 9 = (u,79, j)

We can define a WT on any compact Lie group(even not
Commutatlve) V]_a * Ref.: Topics in harmonic analysis

related to the Littlewood-Paley theory

z +% (g /w x(g'"1.9)dg’

The same previous properties hold for this WT/Scattering.

Ref.: Group Invariant Scattering, Mallat S
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Separable Roto-Translation
Scattering oo,

Roto-translation group is not separable yet we
used a separable wavelet transform on it.

No averaging along angle (sensitivity increased)
Separable (simple to implement and fast)

Equal (slightly better) results as with non
separable



Ref.: Deep Roto-Translation Scattering

I Separable convolution that
recombines angles on 2nd order

Separable Roto-Translation scattering
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5 Linearization of the rotation

Work in progress

* For a deformation:
u—T7(u)~v—710)+ T —V71)(v)(u—v)
* In fact the the affine group acts also on the
deformation diffeomorphism:

g-( —7)(u) = g.(I —7)(v) +g.( = V7)(v)(u —v)
* Decompose it on the affine group: (I — V7)(v) = 77, () K (v)
* A way to linearize the action of the rotation?

|Sz — Sz, || < C(||Vrel| + ...)
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Classification pipeline

—— Ly — L(I)ZC w

Scattering Supervised \

Transform on YUV dimensionality Gaussian SVM
+Log Reduction

* We learn L(select features) and w(select

samples) from the data

* Getting L is the most costly part of the
algorithm...(Orthogonal Least Square)
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Ref.: On the difference between orthogonal

" matching pursuit and orthogonal least squares.
® T. Blumensath and M. E. Davies.

* Supervised forward selection of features. The

ENS

selection is done class per class. (similar to OMP)
* Principle: given a dictionary of feature {ox }«
e Set y; = 1 1if ¢ is in the class, 0 otherwise
* Find the most correlated feature ®xwith ¥

* Pull it from the dictionary, orthogonalize the
dictionary and normalize the dictionary.

 Select it. Iterate.



Dataset Type Paper Accuracy

______________ Caltech101 Seattering . 799
_________________________________________________________________ Unsupervised  : Askthelocals . 773
B S S 5 S S L2
_______________________________________________________________________________________________________________________________ M-HMP 825 .

: Supervised DeepNet 91.4
______________ Caltech256  Scattering . 436 <+
_________________________________________________________________ Unsupervised | Askthelocals & 417
_______________________________________________________________________________________________________________________________ M-HMP 80T

: Supervised DeepNet 70.6
________________ CIFARI0 Scatering . 83  “
_________________________________________________________________ Unsupervised | R¥L . .81 .

, Supervised DeepNet 91.8
_______________ CIFAR100 Seattering 568 <
_________________________________________________________________ Unsupervised . R¥L . ...5%%2 .

Supervised DeepNet 65.4 Identical

Representation

Numerical results
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Method Caltech101 CIFAR10

Translation Scattering

order 1 59.8 79.6

Translation Scattering
order 2

............................................................................................................................................................................................................................

Translation Scattering

order 2+ OLS 715.4 31.6

Roto-translation Scattering
order 2 '

............................................................................................................................................................................................................................

Roto-translation Scattering

order 2+ OLS 79.9 82.3

Improvement layer wise
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How to fill in the Gap?

Adding more supervision in the pipeline

Building a DeepNet on top of it? Initialising a
DeepNet with wavelets filters? Question is
opened.

A more complex classifier could help to handle
class variabilities. Fisher vector with scattering?

Adding a layer means identifying the next
complex source of variabilities. Are they

geometric? classes?
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Other application of ST

Audi ~___— Vincent Lostanlen
udio

Quantum chemistry —— Matthew Hirn

Temporal data, video

Reconstruction of WT > Iréene Waldspurger

Unstructured data...
\ Mia Chen

Xu Cheng



! .,'
J|f=y

ENS

DATA

Conclusion

* We provide:
 Mathematical analysis and algorithms
* Competitive numerical results

e Software: http:/www.di.ens.fr/~oyallon/ (or send me

an email to get the latest!)



http://www.di.ens.fr/~oyallon/

