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Comparison with other architecture

Color discriminability

Scattering network as Deep architecture

-We build a 2 layers network without training and which achieves similar Image x is separated into 3 color channels, xy, xy, xy. The final image - LLC[3] is a two layers architecture with SIFT + unsupervised dictionary
performances with a convolutional network pretrained on ImageNet (Alex representation is the aggregation of the scattering coefficients of each learning (specific to the dataset).
CNN[1D. | channels: . Scattering performs similarly to Alex CNN on 2 layers [4].

> Via groups acting on images, scattering |
network creates a representation ® - Other properties: Ox = {Sxy, Sxu, Sxv } Main differences with Alex CNN
invariants to: - discriminability of colors _ | |
. rotation . stability to small deformations [2]. -No learning step -Gomplex wavelets instead of real filters
. translation. . Avg~Max . Modulus (/2-pooling) instead of RelLu

»No contrast normalization - Separable filters (tensor structure).

Deep scattering representation

Open questions

. A scattering transform is the cascading of linear wavelet transform W,, and
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- Predefined VS learned
(Wi| =p [Wy| ==p o ==p [Wy| == SVM

modulus non-linearities |.|:

X ‘W1| —Uix— ‘W2| —U>x—... Classifier
Pooling Pooling Pooling
{x1,...., x4 }— D —{Pxy, ..., Dxy } — Standardization — Linear SVM Hardcodeg Learned
Sox 51X ApR Until which depth 1 < N can we avoid learning?
Pooling is Average-Pooling (Avg) or the Max-Pooling (Max), defined on . Computation of the representations. -Max Pooling VS Avg Pooling

blocks of size 2.
. The first linear operator is a convolutional wavelet transform along space:

Urx(u, 01.1) = | x * by ;. | ()

» Standardization: normalization of the mean and variance.
. Fed to a linear kernel SVM.

Conclusion & future work

- Scattering network provides an efficient initialization of the first two layers of

Numerical reSUItS a network_
—J11 4 & & ® = = w 3 5 splits on Caltech-101 and Caltech-256. - Optimizing scale invariance.
Image inputs: 256 x 256, J = 6, 8 angles, final descriptor size is 1.1 x 10°. - Designing a third layer?

FF.

- Website of the team: http://www.di.ens.fr/data/
- Edouard Oyallon, edouard.oyallon@ens.fr
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Complex wavelets. Phase is given by color, amplitude by contrast.
. The second linear operator is a wavelet transform along angles and space
applied on U and performed with a separable convolution ®:
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. Scattering coefficients are then
Sx = {Spx, S1x, Sox}



