

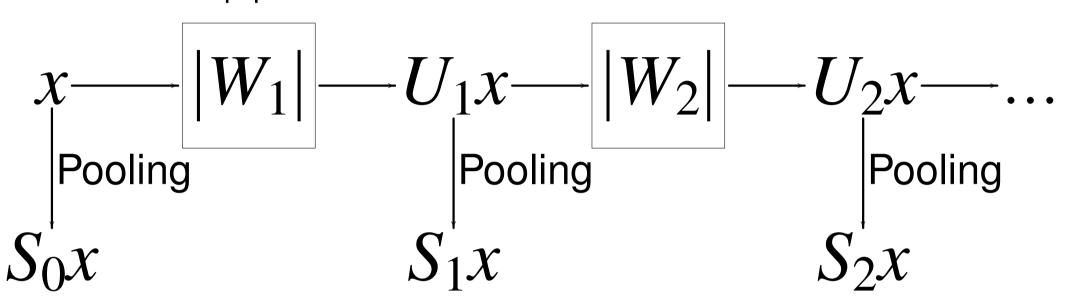
Scattering network as Deep architecture

- We build a 2 layers network without training and which achieves similar performances with a convolutional network pretrained on ImageNet (Alex CNN [1]).
- Via groups acting on images, scattering network creates a representation Φ invariants to:
 - Other properties:
 - discriminability of colors

- rotation
- translation.

Deep scattering representation

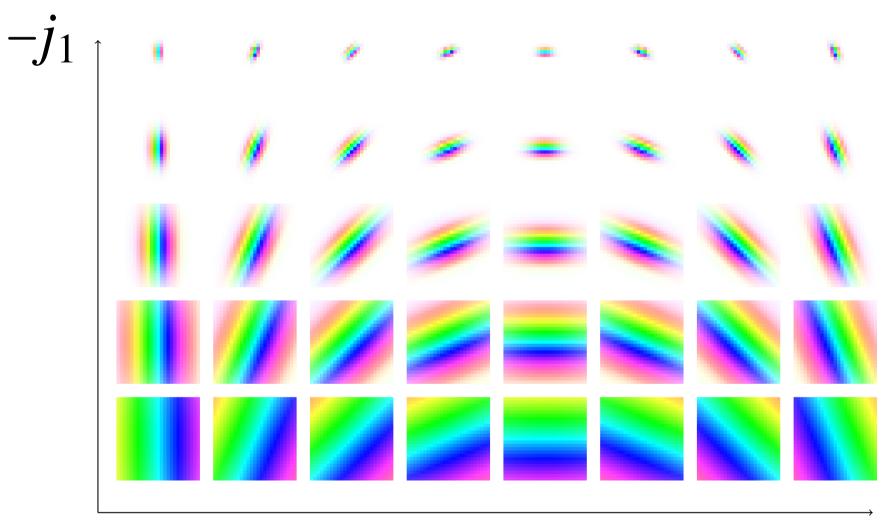
- A scattering transform is the cascading of linear wavelet transform W_n and
- modulus non-linearities |. |:



Pooling is Average-Pooling (Avg) or the Max-Pooling (Max), defined on blocks of size 2^{J} .

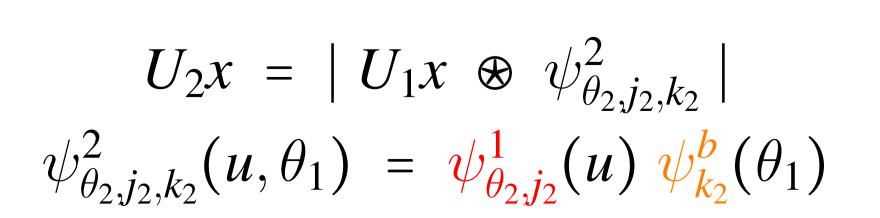
The first linear operator is a convolutional wavelet transform along space:

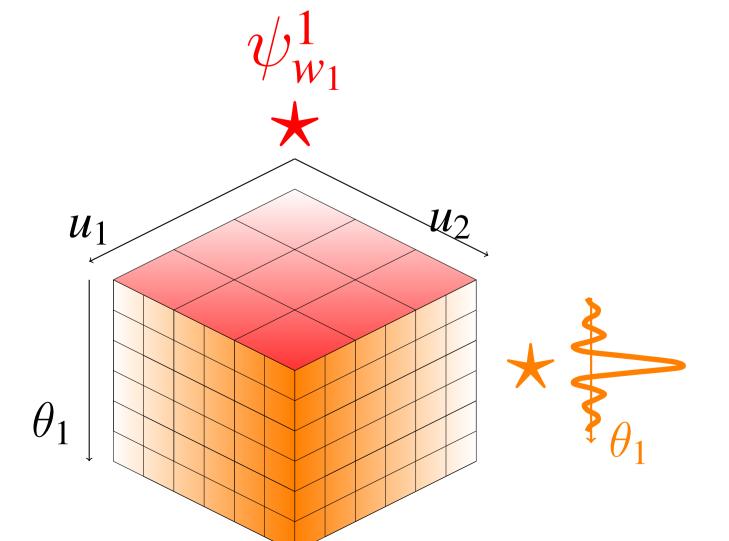
$$U_1 x(u, \theta_1, j_1) = |x \star \psi^1_{\theta_1, j_1}|(u)$$



Complex wavelets. Phase is given by color, amplitude by contrast.

The second linear operator is a wavelet transform along angles and space applied on U_1 and performed with a separable convolution \otimes :





Convolution of U_1x using separable wavelets

Scattering coefficients are then

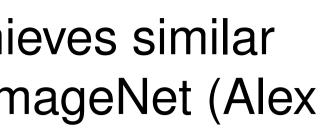
 $Sx = \{S_0x, S_1x, S_2x\}$

Generic Deep Networks with Wavelet Scattering Edouard Oyallon, Stéphane Mallat and Laurent Sifre DATA, Département Informatique, Ecole Normale Supérieure

Color discriminability

Image x is separated into 3 color channels, x_Y, x_U, x_V . The final image representation is the aggregation of the scattering coefficients of each channels:

 $\Phi x = \{Sx_Y, Sx_U, Sx_V\}$



stability to small deformations [2].

Cat

Y channel

Classifier

 $\{x_1, \dots, x_M\} \rightarrow \Phi \rightarrow \{\Phi x_1, \dots, \Phi x_N\} \rightarrow \text{Standardization} \rightarrow \text{Linear SVM}$

- Computation of the representations.
- Standardization: normalization of the mean and variance.
- Fed to a linear kernel SVM.

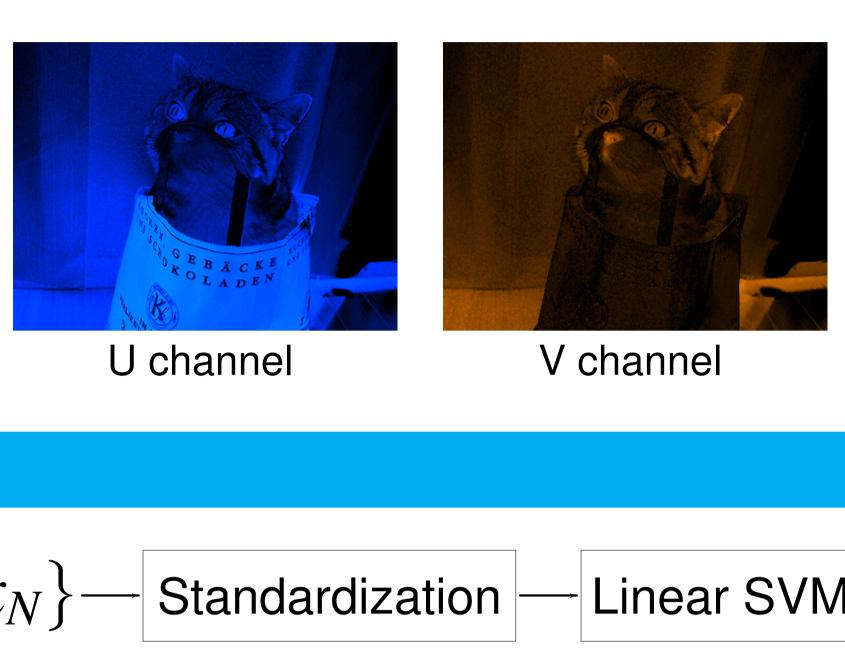
Numerical results

5 splits on Caltech-101 and Caltech-256. Image inputs: 256×256 , J = 6, 8 angles, final descriptor size is 1.1×10^5 .

Samples from Caltech-101 and Caltech-256

Caltech-256 (256 classes, 3.10⁴ images) **Caltech-101** (101 classes, 10⁴ images)

		, 3
Architecture	Layers	Accuracy
Alex CNN	1	44.8 ± 0.8
Scattering, Avg	1	54.6 ± 1.2
Scattering, Max	1	55.0 ± 0.6
LLC	2	73.4
Alex CNN	2	66.2 ± 0.5
Scattering, Avg	2	68.9 ± 0.5
Scattering,Max	2	68.7 ± 0.5
Alex CNN	7	85.5 ± 0.4



Architecture	Layers	Accuracy
Alex CNN	1	24.6 ± 0.4
Scattering, Avg	1	23.5 ± 0.5
Scattering, Max	1	25.6 ± 0.2
LLC	2	47.7
Alex CNN	2	39.6 ± 0.3
Scattering, Avg	2	39.0 ± 0.5
Scattering, Max	2	37.2 ± 0.5
Alex CNN	7	72.6 ± 0.2

Comparison with other architecture

- LLC[3] is a two layers architecture with SIFT + unsupervised dictionary learning (specific to the dataset).
- Scattering performs similarly to Alex CNN on 2 layers [4].

Main differences with Alex CNN

- No learning step
- ▶ Avg≈Max
- No contrast normalization

Open questions

Predefined VS learned $|W_1| \longrightarrow |W_2| \longrightarrow \cdots \longrightarrow |W_N| \longrightarrow SVM$ Hardcoded Learned

Until which depth $n \leq N$ can we avoid learning? Max Pooling VS Avg Pooling

Conclusion & future work

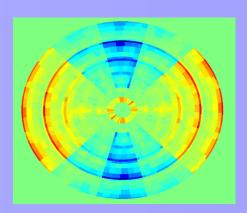
- Scattering network provides an efficient initialization of the first two layers of a network.
- Optimizing scale invariance.
- Designing a third layer?

Contacts

References

- [1] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information *Processing Systems 25*, pages 1106–1114, 2012.
- [2] S. Mallat. Group invariant scattering. *Communications on Pure and* Applied Mathematics, 65(10):1331–1398, 2012.
- [3] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In *Computer Vision and Pattern* Recognition (CVPR), 2010 IEEE Conference on, pages 3360–3367. IEEE, 2010.
- [4] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional neural networks. *arXiv preprint arXiv:1311.2901*, 2013.

DATA



- Complex wavelets instead of real filters
- Modulus (l^2 -pooling) instead of ReLu
 - Separable filters (tensor structure).

Website of the team: http://www.di.ens.fr/data/ Edouard Oyallon, edouard.oyallon@ens.fr