

Hierarchical Attribute CNNs

Institute of Informatics, University of Amsterdam DATA, Département Informatique, Ecole Normale Supérieure/PSL Research University

Jörn-Henrik Jacobsen, Edouard Oyallon, Stéphane Mallat, Arnold W.M. Smeulders

{j.jacobsen,a.w.m.smeulders}@uva.nl, edouard.oyallon@ens.fr

Introduction

Hierarchical Attribute CNNs

How can we introduce **structure** into deep networks to understand them better?

(*Mallat, 2016*) proposes to perform high-dim convolutions which organise the channels

The Dream:

 $x(u, \theta)$

a) Translations along channels modulate signal attributes

Overcomes implementation limitations of Multiscale Hierarchical CNNs and introduces **increasing** invariance along attributes

Core idea: Eliminate dependency to all attributes, but last three:

New attributes are created, convolved along twice and eliminated

PADL Workshop ICML 2017 | Sydney

b) Layers disentangle, increasingly more complex signal attributes with depth

• Good performance requires regularisation and careful implementation Architecture:

rotation (translation along theta) $L_{\tilde{\theta}}x(u,\theta) = x(r_{-\tilde{\theta}}u,\theta - \tilde{\theta})$

Assume the representation encodes the rotation (rotation equivariance) by L_{θ})

An Example: Rotation covariance

• A rotation of the input is a translation of the signal, which is a shift of θ .

Can we generalise this **beyond** roto-translation?

rotation by

Numerical Results

Hierarchical Attribute CNNs dramatically reduce trainable parameters -> Organisation is effective!!

Improved classification performance vs. #Parameters trade-off /

Multi-dimensional Convolution

u: native spatial dimensions

- ► **v**_i: signal attributes (discriminative channels)
- Operators W: convolution along spatial and channel dimensions
- Convolution with filter k corresponds to:

 $W_{j}x_{j-1} = x_{j-1} \star^{u,v_{1},...,v_{j-1}} k_{j}(u,v_{1},...,v_{j-1}) = \sum_{(\tilde{u},\tilde{v})} x_{j-1}(\tilde{u},\tilde{v}_{1},...,\tilde{v}_{j-1})k_{j}(u-\tilde{u},v_{1}-\tilde{v}_{1},...,v_{j-1}-\tilde{v}_{j-1})$ • Covariant with translations along $(v_1, ..., v_i)$: LWx = WLx

Multiscale Hierarchical CNNs

- Class of CNN where one-dimensional channel index is replaced by multidimensional vector of attributes: $v = (v_1, ..., v_j)$.
- Output of layer **j** is represented by: $x_i(u_1, u_2, v_1, ..., v_i)$

complexity of training, compared to FitNet or teacher student methods

Cifar-10 classification performance on par with comparable CNNs

Model	HCNN	HCNN(+)	All-CNN	ResNet-20	NiN
% Acc	91.23	92.3	92.75	91.25	91.20
#params	0.1M	0.3M	1.3M	0.3M	1.0M

Investigating translations L:

• All linear operators W_i are convolutions over (u,v), introduced above; each convolution introduces a new attribute v_i , the index of the new filters, namely *j*: $x_{2}(u,v_{1},v_{2})$

Issues:

- Exponential increase of parameters with depth

 $X_0(\mathcal{U})$

 \rightarrow

 U_2

 U_1

- Large layers, number of attributes increases
- N-dimensional convolutions are expensive

Authors

Edouard Oyallon Stéphane Mallat Arnold Smeulders

Conclusions

- Highly structured: They achieve good classification performance with much less parameters than comparable CNNs
- Hierarchical Attribute CNNs give a framework to study deep network representations
- But attributes are hard to interpret!! Is there a theoretical limitation, are we missing an idea or is there something deeper?

Code

<u>https://github.com/jhjacobsen/HierarchicalCNN</u>