

Deep Learning and (Image) Classification

Edouard Oyallon

advisor: Stéphane Mallat

following the works of Laurent Sifre, Joan Bruna, ...

Deep learning: Technical breakthrough

- Deep learning has permitted to <u>solve</u> a large number of task that were considered as extremely challenging for a computer.
- The technique that is used is **generic** and **scalable**. It simply requires a **large** amount of data.
- Pretty much hype and engineers with deep learning profiles are highly demanded.

Face recognition

Face recognition tasks almost solved(three years of research):

Strategy Games

DeepMind

• Game of GO: completely impossible to solve with Monte Carlo tree search, and solved (two years of research):

Natural Language Processing

• Translation (Google just updated its traduction system with Recurrent Neural Network):

Pure blackbox

- However, nobody has no idea how it works and **few** research works have clues.
- People claim "AI" is raising and that we are simulating the "brain", while mathematicians avoid those techniques like a prawn.
- Can we do maths in deep learning?

DATA

Plot

- Classification?
- · Understanding variabilities in high dimension
- Deepnets
- Wavelets

Classification?

DATA

Classification of signals

- Let n > 0, $(X, Y) \in \mathbb{R}^n \times \mathcal{Y}$ random variables
- Problem: Estimate \hat{y} such that $\hat{y} = \arg\inf_{\tilde{y}} \mathbb{E}(|\tilde{y}(X) Y|)$
- We are given a training set $(x_i, y_i) \in \mathbb{R}^n \times \mathcal{Y}$ to build \hat{y}
- Say one can write $\hat{y} = \text{Classifier}(\Phi x)$, Classifier being built with $(\Phi x_i, y_i)$
- 3 ways to build Φ :
 Supervised Unsupervised

$$(x_i, y_i)_i$$

Unsupervised $(x_i)_i$

Predefined Geometric priors

$$\mathcal{Y} = \{ ullet, ullet \}$$
 $n = 2$ Classifier w

Classifier

- A classifier is an **algorithm** that outputs the probability distribution for a given sample x_i to belong to a class y_i .
- A classical example is given by the Support Vector Machine (SVM):

Minimizing the distance between the convex-hull and taking the associated hyperplan ω

Discrete image to continuous image

- An image x corresponds to the discretisation of a physical anagogic signal (light!)
- An array of numbers: $x[n_1, n_2] \in \mathbb{R}, n_1, n_2 \leq N$
- One can set $x(u)=\sum_{n\in\mathbb{Z}^2}x[n]\delta_n(u)$ then, $\mathcal{F}x(\omega)=\sum_{n\in\mathbb{Z}^2}x[n]e^{-in\omega}, \mathcal{F}x\in L^2[0,1]$

• Nyquiest-Shannon sampling property:
$$\exists ! \tilde{x} \in \mathbb{L}^2(\mathbb{R}), \operatorname{support}(\mathcal{F}\tilde{x}) \subset [-\frac{1}{2}, \frac{1}{2}], \mathcal{F}\tilde{x}_{|[-\frac{1}{2}, \frac{1}{2}]} = \mathcal{F}x$$

High Dimensional classificatio

 $(x_i, y_i) \in \mathbb{R}^{224^2} \times \{1, ..., 1000\}, i < 10^6 \longrightarrow \hat{y}(x)$?

Estimation problem

"Rhino"

Not a "rhino"

High-dimensionality issues

 Density functions are difficult to estimate in high dimension.

• For a fixed number of points and bin size, as *N* increases, the bins will be likely to be empty.

Curse of dimensionality

Image variabilities

Geometric variability

Groups acting on images:

translation, rotation, scaling

Other sources: luminosity, occlusion,

small deformations

$$x_{\tau}(u) = x(u - \tau(u)), \tau \in \mathcal{C}^{\infty}$$

$$I \xrightarrow{I - \tau} f$$

Class variability

Intraclass variability
Not informative

Extraclass variability

High variance: must be reduced

Fighting the curse of dimensionality

• **Objective:** building a representation Φx of x such that a simple (say euclidean) classifier \hat{y} can estimate the label y:

Designing

 consist of building an approximation of a low dimensional space which is regular with respect to the class:

$$\|\Phi x - \Phi x'\| \ll 1 \Rightarrow \hat{y}(x) = \hat{y}(x')$$

How can we do that?

Separation - Contraction

 In high dimension, typical distances are huge, thus an appropriate representation must contract the space:

$$\|\Phi x - \Phi x'\| \le \|x - x'\|$$

· While avoiding the different classes to collapse:

$$\exists \epsilon > 0, y(x) \neq y(x') \Rightarrow \|\Phi x - \Phi x'\| \ge \epsilon$$

Nature of the variabilities

• A classification problem can be written as a loss minimisation:

$$\inf_{\text{Classifier}, \Phi} \sum_{i} \text{loss}(x_i, y_i)$$
$$\text{loss}(x, y) = \|\text{Classifier}(\Phi x) - y\|$$

• A symmetry L corresponds to a transformation that preserves the class:

(x,y) in the training set $\iff (Lx,y)$ in the training set

That should preserve also the representation:

$$\Phi Lx = \Phi x \Rightarrow loss(Lx, y) = loss(x, y)$$

An example: translation

Translation is a linear action:

$$\forall u \in \mathbb{R}^2, L_a x(u) = x(u-a)$$

• (Culture) The set of translations is a (Lie) group with an exponential map:

$$L_{a+b} = L_a \circ L_b \text{ and } L_a x(u) = \sum_{n>0} (\frac{d^n x}{du^n})_u \frac{(-a)^n}{n!} = e^{-a(\frac{d}{du})_u} x$$

Similar to: $\theta \rightarrow e^{i\theta}$

• In many case, it is a variability to reduce:

Convolution: covariance to translation

• A linear (bounded) operator W of L^2 is a convolution iff it is covariant with the action of translations:

$$\forall a, L_a W = W L_a \Rightarrow W x(u - a) = W x_a(u), x_a(u) = x(u - a)$$

In this case,

$$\exists w, Wx(u) = \int x(t)w(u-t)dt$$

And it is diagonalised by its Fourier basis:

$$We^{i\omega^T u} = \mathcal{F}w(\omega)e^{i\omega^T u}$$

Invariance to translation

• In many cases, one wish to be invariant globally to translation, a simple way is to perform an averaging:

$$Ax = \int L_a x da = \int x(u) du$$
 It's the o frequency! $AL_a = A$

• Even if it can be localized, the averaging keeps the low frequency structures: the invariance brings a loss of information!

Covariance (even non linear) and averaging imply invariance:

$$WL_a = L_aW \Rightarrow AWL_ax = AL_aWx = AWx$$

An invariant is created!

DATA

Averaging makes euclidean distance meaningful in high dimension

How to tackle the curse of dimensionality?

 Cascade of covariant operators with translation to build an invariant to translations:

$$AW_J...W_1L_ax = AW_J...W_1x$$

Linear and non-linear contraction to reduce the volume:

$$\|\rho(x) - \rho(y)\| \le \|x - y\|$$

• An interesting object: $\Phi x = A\rho W_J...\rho W_1 x$

How to tackle the curse of dimensionality? (2)

Weak differentiability property:

$$\sup_{L} \frac{\|\Phi Lx - \Phi x\|}{\|Lx - x\|} < \infty \Rightarrow \exists \text{ "weak" } \partial_x \Phi$$

$$\Rightarrow \Phi Lx \approx \Phi x + \partial_x \Phi L + o(\|L\|)$$
 A linear operator

 \cdots Displacement L

A linear projection (to kill L) build an invariant

How can we build Φ ?

- Enumerating the different variabilities is hard.
- Since Deep neural networks solve the vision classification task, it is necessary they build invariance to a large set of intra-class variabilities.
- So, what is a Deep network?

Delving into the technique

- Building a Deep network is challenging.
- It requires a large amount of data and GPUs
- ... and there are many more details.

DATA

Dataset: CIFAR

• 50 000 images for training, 10 000 images for testing, of size 32x32 (small), 10/100 classes

Dataset: Imagenet

- 1,2M labeled images for training, 1000 classes (car, dog, ...) of various sizes, 400k for testing
- Natural images with large variability

Benchmarks

2010 2011 2012 2013 2014 2015 2016

DeepNet?

• A DeepNet is a **cascade** of linear operators with a point-wise non-linearity.

Ref.: Rich feature hierarchies for accurate object detection and semantic segmentation. Girshick et al.

Convolutional network and applications in vision. Y. LeCun et al.

Linear

• Each operators is supervisedly learned

Formal way to write it:

it: $x_{j+1} = \rho W_j x_j$

Pointwise non-linearity

DATA

Architecture of a CNN

· Cascade of convolutional operator and non-linear operator:

• Designing a state-of-the-art deep net is generally hard and requires a lot of engineering

Typical CNN architecture

Ref.: ImageNet Classification with Deep Convolutional Network, A Krizhevsky et al.

"AlexNet"
60M parameters, 8 layers

Inception Net

Ref.: Going Deeper with Convolutions, C Szegedy et al.

5M parameters, 38 layers

ResNet

4M parameters, 152 layers

Deep Face

120M parameters, 7 layers

Optimizing a DeepNet

• The output Φx has the dimension of the number of classes. The DeepNet operators are optimised via the neg cross entropy and a stochastic gradient descent:

$$-\sum_{n}\sum_{\text{class}} 1_{y_n = \text{class}} \log(\Phi x_n)_{\text{class}}$$

Ref.: Convolutional network and applications in vision. Y. LeCun et al.

• All the functions are differentiable: back propagation algorithm+ stochastic gradient:

learning rate randomly selected sample
$$w_j^{i+1} = w_j^i - \alpha_i \nabla w_j(w_j^i, X_j)$$

It is absolutely non-convex! No guarantee to converge.

DATA

CUDA

- Deep learning algorithms rely a lot on linear operations.
- CUDA routines permit to implement efficiently linear algebra routines: speed up of **80**.
- What costs a lot of with a GPUs are the I/O

Implementation of a CNN

Splitting dataset into batches of size

Typical training time on imagenet: 100 epochs 2 hours per epoch

GPU

Softwares...

- All the packages are based on GPUs, select your favorite via: simplicity of benchmarking, data input...
- All available in python or C++; developed by FB, Google, ... there is a war!

DATA

Training your own CNN

- Again, the optimisation is no convex: a lot of hyper parameters (learning rate, l2 regularization...) to tune:
- Demo!

Why is deep learning dangerous?

Pure black box. Few mathematical results are available.
 Many rely on a "manifold hypothesis". Clearly wrong:
 Ex: stability to diffeomorphisms

- No stability results. It means that "small" variations of the inputs might have a large impact on the system. And this happens.
- Small data?
- Shall we learn each layer from scratch? (geometric priors?)
- Thanks to the cascade, features are hard to interpret

Identifying the variabilities?

Several works showed a deepnet exhibits some covariance:

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

· Manifold of faces at a certain depth:

Can we generalise these?

Ref.: Unsupervised Representation Learning with Deep Convolutional GAN, Radford, Metz & Chintalah

Why does it work?

Progressively, there is a linear separation that occurs

 In fact, euclidean distances become more meaningful with depth and symmetry groups seem to appear.

Ref.: Building a Regular Decision Boundary with Deep Networks, CVPR 2017, EO Mutiscale Hiearchical Convolutional Network, Jacobsen, O, Mallat, Smeulders

Indicates a progressive dimensionality reduction!

Wavelets: avoiding learning?

• Wavelets help to describe signal structures. ψ is a wavelet iff

$$\psi \in \mathcal{L}^2(\mathbb{R}^2, \mathbb{C})$$
 and $\int_{\mathbb{R}^2} \psi(u) du = 0$

- They are chosen localised in space and frequency.
- Wavelets can be dilated in order to be a **multi-scale** representation of signals, **rotated** to describe rotations.

 1 $-r_0(u)$

$$\psi_{j,\theta} = \frac{1}{2^{2j}} \psi(\overline{\frac{r_{\theta}(u)}{2^{j}}})$$

• Design wavelets selective to an **informative** variability.

 $|\hat{\psi}|$

Non-Isotropic

$$\psi(u) = \frac{1}{2\pi\sigma} e^{-\frac{\|u\|^2}{2\sigma}} (e^{i\xi.u} - \kappa) \qquad \qquad \phi(u) = \frac{1}{2\pi\sigma} e^{-\frac{\|u\|^2}{2\sigma}} e^{-\frac{\|u\|^2}{2\sigma}}$$
Heisenberg principle! Good localisation in space and Fourier

(for sake of simplicity, formula are given in the isotropic case)

The Gabor wavelet

 ω_1

Wavelet Transform

- Wavelet transform: $Wx = \{x \star \psi_{j,\theta}, x \star \phi_J\}_{\theta,j \leq J}$
- Isometric and linear operator of L^2 , with

$$||Wx||^2 = \sum_{\theta,j < J} \int |x \star \psi_{j,\theta}|^2 + \int x \star \phi_J^2$$

• Covariant with translation

$$W(x_{\tau=c}) = (Wx)_{\tau=c}$$

Nearly commutes with diffeomorphisms

$$||[W, ._{\tau}]|| \le C||\nabla \tau||$$

Ref.: Group Invariant Scattering, Mallat S

A good baseline to describe an image!

DATA

Success story Wavelets for Textures&Digits

• Non-learned representation have been successively used on:

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

• Digits (patterns):

• Textures (stationary processes):

+Translation

Small deformations

Ref.: Rotation, Scaling and Deformation Invariant Scattering for texture discrimination, Sifre L and Mallat S.

Rotation+Scale

 However all the variabilities (groups) here are perfectly understood. (not with natural images)

Conclusion

- Deep Learning architectures are of interest thanks to their outstanding numerical results.
- Black boxes must be opened via maths.
- Check my website for softwares and papers: http://www.di.ens.fr/~oyallon/

Thank you!