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o Deep learning: Technical

breakthrough

+ Deep learning has permitted to solve a large number of
task that were considered as extremely challenging for a
computer.

+ The technique that is used is generic and scalable. It
simply requires a large amount of data.

» Pretty much hype and engineers with deep learning
profiles are highly demanded.



DATA
Face recognition

- Face recognition tasks almost solved(three years of

research):
facebook

who's in These Photos?

The photos you uploaded were grouped automatically so you can quickly label and notify friends in these pictures.,
{Friends can always untag themselves.)

\Who is this? Who is this? Who is this?
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DeepMino
» Game of GO: completely impossible to solve with

Monte Carlo tree search, and solved (two years of
research):

, Strategy Games
r

Google DeepMind

AlphaGo
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Natural Language Processing

- Translation (Google just updated its traduction system
with Recurrent Neural Network):

~ 1 / ;

2% (IDSHbI LLOKO/IA.A

#EveRyoneSpeaks Food
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Pure blackbox

- However, nobody has no idea how it works and few
research works have clues.

- People claim "AI" is raising and that we are simulating
the "brain", while mathematicians avoid those

techniques like a prawn.

- Can we do maths in deep learning?



DATA

Plot

- Classification?
- Understanding variabilities in high dimension
+ Deepnets

- Wavelets
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Classification ?



- Problem: Estimate § such that § = arg inf; E(

D :
Classification of signals

. Let n >0, (X,Y) € R" XY random variables

y(X) = Y])

- We are given a training set (i, 9;) € R™ X YVto build ¥

+ Say one can write § = Classifier(®x), Classifier being

built with (D, y;)

- 3 ways to build &:

Supervised Unsupervised Predefined
(4, Yi)i () Geometric priors

y — { 7.} o ’ o °
T — 2 o o W$ o
Classifier w
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Classifier

- A classifier is an algorithm that outputs the probability
distribution for a given sample x; to belong to a class V.

- A classical example is given by the Support Vector
Machine (SVM):

wlia+b>07

|

Ref.: Vapnik, Chervonenkis, 63 Linear ClaSSiﬁeI‘

Minimizing the distance between the convex-hull and taking the
associated hyperplan w
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ENS Discrete image to continuous

image

+ Animage x corresponds to the discretisation of a
physical anagogic signal (light!)

+ An array of numbers: z|ni,ns] € R,n;,ng < N

1 A
PWARS/ACWAW
| VN N N A e G N A 7
then, Fr(w) = Z r[n]e "™, Fx € L?]0,1]

nEZ?
» Nyquiest-Shannon sampling property:

1
Jlx € LQ(Rj,Support(fi) C | 5’ 2]7}—@[
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+ One can set z(u)
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“% High Dimensional classificatio
(23, 5;) € R??Y x {1,...,1000},i < 106 — §(x)?

Estimation problem

Training set to
predict labels

Not a "rhino"
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High-dimensionality issues

- Density functions are difficult to estimate in high
dimension.

e

- For a fixed number of points and bin size, as NV
increases, the bins will be likely to be empty.
Curse of dimensionality



DATA
Image variabilities

Geometric variability Class variability

Groups acting on images:

translation, rotation, scaling

. Intraclass variability
\ Not informative

Other sources : luminosity, occlusion, Extraclass Val‘lablllty

small deformations

r-(u) =x(u—71(u)), 7€ C™

T [—7’>.)

High variance: must be reduced
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Fighting the curse of

dimensionality

- Objective: building a representation ®x of x such that a

simple (say euclidean) classifier § can estimate the

label v: )
’ ’ o . "
.D ° . ¢ D =>> d o o \5 °
R Rd

- Designing ® consist of building an approximation of a

low dimensional space which is regular with respect to
the class:

|dxr — P2’ || K 1= g(x) = ()

- How can we do that?
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Separation - Contraction

» In high dimension, typical distances are huge, thus an
appropriate representation must contract the space:

[z — @' < |z — |

» ’

- While avoiding the difterent classes to collapse:
Je > 0,y(x) # y(z') = [Pz — P2'[| > €
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Nature of the variabilities

- A classification problem can be written as a loss

minimisation:

inf Z loss(z;, y;)

Classifier,®
loss(x, y) = ||Classifier(®x) — y|

. A symmetry L corresponds to a transformation that

preserves the class:

(x,y) in the training set <= (Lx,y) in the training set

+ That should preserve also the representation:

OLx = ®x = loss(Lx,y) = loss(x, y)
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An example: translation

+ Translation is a linear action:
Vu € R? Lox(u) = 2(u — a)
+ (Culture) The set of translations is a (Lie) group with an
exponential map:

d" _\n
La—l—b = Ly 0oLy and Lail’}(U) = Z(ﬁ)u( na') — e_a(%)ux
n>0 '

Similar to: § — %

- In many case, it is a variability to reduce:
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Convolution: covariance to

translation

- A linear (bounded) operator IV of L? is a convolution iff
it is covariant with the action of translations:

Va, LLoW =W L, = Wx(u—a) =Wazx,(u),zq(u) = x(u — a)

 In this case,

Jw, Wax(u) = /x(t)w(u — t)dt

- And it is diagonalised by its Fourier basis:

We™ “ = Fu(w)e™
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Invariance to translation

- In many cases, one wish to be invariant globally to translation, a
simple way is to perform an averaging:

Ax = /La:vda = /x(u)du It’s the o frequency!
AL, = A

- Even it it can be localized, the averaging keeps the low frequency

structures: the invariance brlngs a loss of information!

* R

fledceFrance
- Covariance (even non linear) and averaging 1mply invariance:

WL, =L,W = AWL,x = AL ,Wx = AW<x

An invariant is created!
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Translation

i -

X |z —yl|l2 =2

@ Rotation @ /

Averaging is the key
_to get invariants

X

Y
Averaging makes euclidean distance

meaningful in high dimension
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ENS How to tackle the curse of

dimensionality?

- Cascade of covariant operators with translation to build
an invariant to translations:

AWJ...WlLCLCIZ — AWJWlilj

« Linear and non-linear contraction to reduce the
volume:

Ip(x) — p)| < ||z —yll

+ An interesting object: ®x = ApW;...oWix
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ENS How to tackle the curse of

dimensionality? (2)

- Weak difterentiability property:

Ol — P
sup | Lx d < o0 = d”weak” 0,P
L || Le— x| = ®La ~ $x + 0, PL + of|[L|)

A linear operator

Displacement [,

- A linear projection (to kill L) build an invariant

o o

> o
+ projection o
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How can we build ¢ ?

- Enumerating the difterent variabilities is hard.

- Since Deep neural networks solve the vision

classification task, it is necessary they build invariance
to a large set of intra-class variabilities.

- So, what is a Deep network?



DATA

Delving into the technique

- Building a Deep network is challenging.
- Itrequires a large amount of data and GPUs

- ... and there are many more detalils.
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Dataset: CIFAR

- 50 000 images for training, 10 000 images for testing, of
size 32X32 (small), 10/100 classes
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- 1,2M labeled images for training, 1000 classes (car, dog,
...) of various sizes, 400k for testing

- Natural images with large variability
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Benchmarks
Handcrafted
100 DeepNet
human
> 90
s
Image Net § 80 Ref.: image-net.org
(av]
N

=3
-

60
2010 2011 2012 2013 2014 2015 2016

Unsupervised
100 DeepNet
human
> 90
2y}
=
CIFAR § 80 Ref.: http://rodrigob.github.io/are_we_there_yet/build/

S 70

60

2010 2011 2012 2013 2014 2015 2016


http://image-net.org
http://rodrigob.github.io/are_we_there_yet/build/
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DeepNet?

A DeepNet is a cascade of linear operators with
a point-wise non-linearity.

Ref.: Rich feature hierarchies for accurate
object detection and semantic
Qperation segmentation. Girshick et al.
> > > > >
Convolutional network and
applications in vision. Y. LeCun et al.

layer of
neurons

* Each operators is supervisedly learned

Linear

e Formal way to write it: /

Litl — ,OWjZIZ‘j

Pointwise non-linearity /
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ENS Architecture of a CNN

- Cascade of convolutional operator and non-linear operator:

Classifier
/V
L0 T1 To £z Jj

Tjt1(u, A) = P(Z i (o A) xw, 5 (u))

+ Can be interpreted as neurons sharing weighté\: \ The kernel

A\ ‘/‘\ ./‘\ is learned

Designing a state-of-the-art deep net is generally hard and requires a lot of engineering
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Typical CNN architecture

Ref.: ImageNet Classification with Deep Convolutional Network, A Krizhevsky et al.
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"AlexNet"

60M parameters, 8 layers
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Inception Net
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s, C Szegedy et al.

Ref.: Going Deeper with Convolution

......

.....

5M parameters, 38 layers
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ResNet

Ref.: Deep Residual Learning for Image Recognition, K He et al.

4M parameters, 152 layers
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Deep Face

z [\
El\ NS
= ] 8
wl /Ao
wl /L
al/ W
W
= |
- C1: M2 C3: L4: LS: L6: F7: F8
0"'5"7_"’0("(}10"?_0002 P9 Frontalizaton: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x/x7x16 16x5x5x16 4096d 40304
Detection & Localization @152X152x3 @142x142 @71x71 @E3x63 @55x55 @25x25 @21x21

120M parameters, 7 layers
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Optimizing a DeepNet

- The output & has the dimension of the number of
classes. The DeepNet operators are optimised via the
neg cross entropy and a stochastic gradient descent:

_ Z: Z ]-yn:ClaSS lOg(q)ajn)claSS

T C 1 aSsS Ref.: Convolutional network and
applications in vision. Y. LeCun et al.

- All the functions are difterentiable: back propagation
algorithm+ stochastic gradient:

learnmg rate  randomly
selected

sample
’LH — w — a; VW, w],X

- Itis absolutely non-convex! No guarantee to converge.
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CUDA

NVIDIA.

- Deep learning algorithms rely a lot on linear
operations.

- CUDA routines permit to implement efhiciently linear
algebra routines: speed up of 8o.

« What costs a lot of with a GPUs are the I/O
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Implementation of a CNN

Typical training time on imagenet: 100 epochs

Splitting dataset 2 hours per epoch
into batches of size
256
l Oloss  Oloss Oz Oloss Ox; Oloss

256 [ Owj 8263' ﬁwj (9513j_1 @CEj_l 8333'

]

]

Tq L2
] — AN
]
—> W Wo loss
b — r

I Oloss ] loss

L ] o1, 0o

] Oloss 010ss

] owq Ows

]

CPU GPU
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Softwares...

- All the packages are based on GPUs, select your favorite
via: simplicity of benchmarking, data input...

- All available in python or C++ ; developed by FB,
Google, ... there is a war!

Hard Modularity Simple
< .o C
:: This is subjective
2 PyTorch ( J )
E Cafte
g Theano
£[MatConvNet  Tensorflow

"Simple
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Training your own CNN

- Again, the optimisation is no convex: a lot of hyper

parameters (learning rate, 12 regularization...) to tune:

« Demo!
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Why is deep learning dangerous?

« Pure black box. Few mathematical results are available.

Many rely on a "manifold hypothesis". Clearly wrong:

Ex: stability to diffeomorphisms

(y JJ

- No stability results. It means that' small variations of

the inputs might have a large impact on the system.
And this happens.

- Small data?

- Shall we learn each layer from scratch? (geometric

priors?)

- Thanks to the cascade, features are hard to interpret
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[dentifying the variabilities?

- Several works showed a deepnet exhibits some

ENS

covariance:
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(a) Lighting (b) Scale

(c) Object color (d) Background color
Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

- Manifold of faces at a certain depth:
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Ref.: Unsupervised Representation Learning with Deep Convolutional GAN
Radford, Metz & Chintalah

- Can we generalise these?
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Why does it work?

- Progressively, there is a linear separation that occurs

ENS

Ref.: Visualizing and Understanding Convolutional Networks, M Zeiler, R Fergus

ACCURACY

- In fact, euclidean distances become more meaningtul
with depth and symmetry groups seem to appear.

Ref.: Building a Regular Decision Boundary with Deep Networks, CVPR 2017, EO
Mutiscale Hiearchical Convolutional Network, Jacobsen, O, Mallat, Smeulders

Indicates a progressive dimensionality reduction!
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Isotropic

DATA
Wavelets: avoiding learning?

Wavelets help to describe signal structures. ¢ is a

wavelet iff
Y € L2(R?,C) and 4, ¥(u)du = 0
They are chosen localised in space and frequency.

Wavelets can be dilated in order to be a multi-scale

representation of signals, rotatewd to describe
V5.0

rotations. 1 —re(u) &

Design wavelets selective to an informative

variability. .
| Qp ‘ Non-Isotropic

» U vs -
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" ¥ ¥y F &= = %N &
NEFE 2 AR
Vi #Z#=s\\

Y(u) = —e” 2 (e — k) H(u) = —— e~ 5o

1 Jlu]®
27TU Heisenberg 27TO-

principlel!
Good localisation in
space and Fourier

(for sake of simplicity, formula
are given in the isotropic case)

The Gabor wavelet
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Wavelet Transform

* Wavelet transform : Wz ={z %19, 2% }0 i<

AW2
* Isometric and linear operator of L with a - g
Wz||? = Z /\a:*wj,9|2—|—/a:'*¢2j » s o)
0.j<J ~ '.‘ =
* Covariant with translation -
W (=) = (Wa)r— 4\

* Nearly commutes with diffeomorphisms
|| [W7 °T] H S C | | VT H Ref.: Group Invariant Scattering, Mallat S
* A good baseline to describe an image!
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BN Success story

Wavelets for Textures&Digits

* Non-learned representation have been

successively used on:

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

+ Digits (patterns): ¥ H#“4 4 « 4 ¢ ¥ ¥4 4
Ss5495§8585556€¢
77077017777
‘%’385”8\!8'2‘8’0‘

Small deformations

* Textures (stationary processes) +Translation

Rotation+Scale

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L. and Mallat S.

* However all the variabilities (groups) here are
perfectly understood. (not with natural images)
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Conclusion

- Deep Learning architectures are of interest thanks to

their outstanding numerical results.

- Black boxes must be opened via maths.

- Check my website for softwares and papers: http://

www.di.ens.fr/~oyallon/

Thank youl


http://www.di.ens.fr/~oyallon/
http://www.di.ens.fr/~oyallon/

