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Analyzing and Introducing Structures
in Deep Convolutional Neural Networks
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High Dimensional classification

W Fstimation problem

Training set to

predict labels

*

Geometric variability

High variance: how to reduce it? N1
Groups acting on images: Not a "rhino

translation, rotation, scaling

What is the nature
- \ of other sources of variability?
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breakthrough

e Deep learning has permitted to solve a .

Deep learning: Technical

arge number

of task that were considered as extreme]
challenging for a computer.

Y

Ex.: Vision, Game of Go, Speech recognition, Artistic style transfer. . .

e The technique is generic and its success

it reduces large sources of variability.

e How, why?

implies that
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non-linear operator convolutional operator
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Ref.: ImageNet Classification with
Deep Convolutional Neural Networ

Deep Convolutional Neural Networks.
A Krizhevsky et al.
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Why mathematics about deep learning are important?

e Pure black box. Few mathematical results explain the cascade.
Many rely on a low dimensional "manifold hypothesis":
Variability is too high in images.

e No stability results. It means that "small" variations of the inputs
might have a large impact on the system. And this happens.

Ref.: Intriguing properties of neural networks.
C. Szegedy et al.

e No model of the data. We do not understand what is the nature of
the sources of variabilities that are reduced.

Ref.: Understanding deep learning requires rethinking generalization
C. Zhang et al.

e Shall we learn each layer from scratch? (geometric priors?) The
deep cascade makes features hard to interpret Ref.: Deep Roto- Translation Scattering

for Object Classification. EO and S Mallat
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Overview

Problem: how can we incorporate and analysing

structures into deep networks?

. Scattering for complex image classification
. Beyond scattering: analyzing a supervised CNN
. Best of two worlds: scattering and CNN

. Beyonds euclidean group: Hiearchical CNN
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ENS F1ght1ng the curse of dimensionality

e Objective: building a representation &z of x such
that a simple (say euclidean) classifier ¥ can
estimate the label y:

’ ’ i . °

>
° ° o o ®

RP °
e Designing ®: must be regular with respect to %%e

o D > d o o

class: |dxr — P2’ || K 1= g(x) = g(z)

e Necessary dimensionality reduction and separation
to break the curse of dimensionality:
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RS Wavelets

e ¥ is a wavelet iff /w(u)du = 0 and /|¢\2(u)du < o0
e Typically localised in space and frequency.

e Rotation, dilation of a wavelets: ” i

_ 1 re(u) »
wjﬁ_ﬁ (92j ) L .

e Design wavelets selective to rotation variabilities.

A

‘ w ‘ Non-Isotropic

» Ul v -

Isotropic
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Wavelet Transtorm

o Wavelet transform : Wz = {z * 5.0, T * ¢J}9,j§J

AW2
o Isometric and linear operator of L? with - | g
Wa|? = Z /\x*¢j792+/a;*¢2j . o
0,7<J ' v ‘ : .
e Covariant with translation L,: e »
WL,=L,W » .
e Nearly commutes with diffeomorphisms
H [W, LT] || S CHVTH Ref.: Group Invariant Scattering, Mallat S

e A good baseline to describe an image!
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Scattering Transform
e Scattering transform at scale Jis the cascading of
complex WT with modulus nom—111me%r(i}rt%%/hz aigygwﬁ(is

by a low pass-filtering:
SJZE' — {ZIZ‘ * ¢J,

fE*@bjl,el *¢J7

‘ $*wj1,91 *¢j2,92‘ *¢J}
xZ

vy 02 order 0
7,0
Depth /\

WQ order 1
v q‘b/ | order 2

e Mathematically well defined for a large class of

wavelets.



£ DATA
ENS ) ) ) )
A successful representation in vision

Ref.: Invariant Convolutional Scattering Network, J. Bruna and S Mallat

e Successfully used in several applications:
All variabilities

e Digits % H 3 4{ are known

Small deformations
+Translation

o Textures

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L and Mallat S.

/ Rotation+Scale
\ = -

! ,.'» | ) !
AL AN
| vl I'
X A

g e
o, e &

e The design of the scattering transtorm is guided by the euclidean
group

e To which extent can we compete with other architectures on more
complex problems (e.g. variabilities are more complex)?
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‘Separable Roto-translation Scattering

W, spatial, angular wavelets Sl *xQ 7 S

>

Scattering

@ (Y @ 1) x s

Roto-Translation
Scattering

u *Q
* w » Separable Roto-Translation
Scattering

o Simplification of the Roto-translation scattering

e Discriminates angular variabilities thanks to a
wavelet transform along 61 (no averaging!)

e We combine it with Gaussians SVM

Ref.: Deep Roto-Translation Scattering
for Object Classification. EO and S Mallat
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ENS How much learning is really required?
Performances are given without intensive data augmentation | folj‘g'gjljcete%Eg;‘g;?;ﬁlaégnai?gizi;fat
Dataset Type Accuracy
Caltech101 Scattering 80 <—
Unsupervised 7
: Supervised 93
CIFAR100 Scattering 57 —
Unsupervised 61
"""""""""""""""""""""""""""""""""""""""" E"""""""""""""""""""""""'""""'""""""""';"'"""""""""'""""'"'"""""""'""""""""""""FeW adaptation
: Supervised 82 to the dataset
CALTECH .
How can we explain the gap

CIFAR

5.10* images

100 clagses

32 X 32 color 1mages
LEEY . EEET
== TP
Tml e O

Scattering is competitive | pErosEE@s»
S & 3 v

' ' o1 Y
with unsupervised D e
EEEL O NEREE
=S PP
dEGREESnan

104 1Images
101 classes

with supervised?
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Studying empirically a CNN

mput ® Which ingredient permits CNNs to outperform the

Py Scattering Transform?
3
¥ : :
5><[ Bx Supervised learning: how? why?

e We introduce a CNN which depends only on its width K

and non-linearity p in order to study it.

ad-hoc non-linear module, only 13 layers.

Lj - - -~
Eil?j
) Depth  #params CIFAR10 CIFARI10

Ours 13 28M  95.4 79.6
; SGDR 28 150M  96.2 82.3

¥
Bk

M
@ e (Good perf and limited engineering: no max-pooling or
Bk

¥

A

L

¥

WResNet 28 37TM 95.8 80.0
All-CNN 9 1.3M 92.8 66.6

Output Ljt1--- —l

A block B;
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Example of sandbox application:

on the non-linearity in CNNs
e "More non-linear is better."

100

92 ReLU on a fraction % of the coeflicients a layer x:
5
s_. ReLU(x(.,1)), il<Ek
: ReLUF (2)(, ) & { "otV (@l =8
S 76 x(.,1), otherwise
<

68

60 Tradional pointwise non-linearity

0 0.1 03 05 0.7 0.9 can be weakened
Ratio %
e Non-linearity needs to contract, being continuous or

to remove the phase? AK
0.1 good perf (89% acc.)

-------------------------------------------------- on CIFARI10

v

p(x) =sign(x)(\/|z|+0.1)
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Progressive properties
e We aim to show the cascade permits a progressive contraction &
separation, w.r.t. the depth:

) ) 1% :
. % pVVi . . o ,OWQ g leg , ° .:
R . :
R o SVM NN In the following, representations are spatially averaged.
100

Beést pérfoménanc?:e

20 Nearest Neighbor (NN)
S ° Gaussian SVM
s . .
= N » o
8 o. . ® = .
< ® o o ¢
® ® ®
o ® ¢
® ® o ¢

30

1 2345678 9101112
Depth

Localised classifiers

e How can we explain it?
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ENSUnderstanding the progressive improvement
class ¢
é % 1 .
[ y(es)=y(i;)=c
;E Intra class distance
L 23 456 78 9101112 No clear behavior:
Depth Refining those measures?
- 7 :ZO'j
< . o 5 p
;ff : :J p<P
}E) s ?2 Cumulative eigenvalues O }79 for
% o ® 12
=
5

/ the representation at depth j
i
|

PCA axis P
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ENS Local Support Vectors: exploring regularity

e Estimating the intrinsic dimension of the classification boundary

is hard (curse of dimensionality!)
. We introduce Local Support Vectors(LSV):| .(1): Lt nearest neighbour

J of feature at depth 7
{%’?J ) # ?J(xj)} o

Y(Z5): class of 2
(;\

e We extend this definition recursively to define &LSV:
kE+1

F?H {x; € Fk\card{y(x]) #+ y(x ()) [ <k+4+1} > ——

Features that are not classified by any /- nearest, [<k ,neighbour at depth j

e Regularity measure at depth 5: &~-LSV approximatively indicates
how local is the euclidean metric:

ecI''N (I ec N o ¢ U;I"
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ENSProgressive contraction-separation measure

e We compute the # of LSV at each depth 5 on CIFARI10:

14000 |
|

1
| )
10500 3
— 4
2 e~ 5)
— §
:ﬁi 7000 7
8
9
3500 10
| 11
12
O \

\ Fast convergence:

k only close neighbors
permits to predict LSV’s
label

Slow convergence:
several far neighbors are
enough to predict
LSV’s label

meaningful [ metric:

contraction

e The number of 1-LSV decreases with depth: better local separation of different classes

How does the separation/contraction happen?
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ENS Scattering + CNN

CNN | Scattering

Good perf
Interpretable

e Can we combine the best of both world to
understand better CNNs?

e We demonstrate interpretability and no loss in
informative variabilities for training a CNN

e Remark: Scattering is stable, CNN is unstable, thus Scattering+CNN has no
reason to be more stable
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“ An ideal input for a modern CNN
r — S;—CNN— Deformations
Lyx(u) =x(u—71(u))
e Scattering is stable: (ﬂ T)

1Ssx — Syyll < [l -yl
e Linearize small deformations:
|SyLrx — Syx|| < CV||||z]
e Invariant to local translation: Ref.: Group Invariant Scattering, Mallat S
o] < 27 = S;Lax ~ Sy

o For A u, Syx(u,\) is covariant with SOs(R):

if YuVg € SO2(R), g.z(u) = (g~ u) then,
Sy(g.x2)(u, ) = Syx(g  u, g7 N\) = .55z (u, \)
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Scaling scattering on GPUs

Ref.: Thesis, EO

Lowpass

ScatNet algorithm
— 1st wavelet

Save a lot of memory!
100 speed-up on GPU

.
.
.
-
»

u
U
g

.

Proposed algorithm
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ENS Imagenet /CIFAR

T — S J R S Z \/ 6{ Ref.: Scaling the Scattering Transform:

Deep Hybrid Networks
EO, E Belilovsky, S Zagoruyko

State-of-the-art result on Imagenet2012:

Top 1 Top 5 Hparams
Scat+Resnet-10 69 90 12.8M
VGG-16 69 90 138M
ResNet-18 69 89 11.7M
ResNet-200 79 95 64.7TM

e Demonstrates no loss of information + less layers

Scattering + 5-layers perceptron on CIFAR: 85% acc.

(SOTA w.r.t. non-convolutional learned representation)
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Ref.: Scaling the Scattering Transform:

Deep Hybrid Networks
EO, E Belilovsky, S Zagoruyko

r—— Sy . ResNel—

e We show incorporating geometrical invariants help
learning.(with limited adaptation)

e State-of-the-art results on STL10 and CIFAR10:

Cifar10, 10 classes
keeping 100, 500 and 1000 samples
and testing on 10k

STL10: 5k training, 8k testing, 10 classes
+100k unlabeled(not used!!)

Acc.
+#train 100 500 1000 Full

Scat+ResNet 76
WRN 16-8 35 47 60 96
Supervised 70 VGG 16 2% 47 56 93

Unsupervised 76 Scat+ResNet 38 55 62 93
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Shared Local Encoder
Ref.: Scaling the Scattering Transform:
Deep Hybrid Networks
EO, E Belilovsky, S Zagoruyko
241 54 > Wl > WQ —> W3 \
A
24 S4_’W1 >V[/vQ >W3 >W4—>W5_’W6
| s /
e | | | s, s Wy o s, o] T
\4
< > < >
1 X 1 convolution Fully Connected Layers
(encoder) (classifier)
Is it really a classifier?
Top 1 Top 5
Scat+SLE 57 80 e AlexNet performances with 1x1 conv
510 79
54 79
AlexNet =6 81 e QOutperform based

on SIFT + Fisher Vectors(FV)
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e A local descriptor for classification

e We analyse the scattering’s encoder, which is a descriptor on

neighbourhood of size 2* x 2* pixels:

Ref.: Scaling the Scattering Transform:
Deep Hybrid Networks
EO, E Belilovsky, S Zagoruyko

iﬁli S4 —» Wi = Wa | W5 >

e Good transfer learning performance on Caltech101(83%)!
Analog to previous reported performance. Ref: Visualizing and Understanding

Convolutional Networks, M Zeiler, R
Fergus

e Atoms’ index of Wi are structured by the order 0, 1, = of Sa:
(W1S4)r = wo k. (x * ¢;)

+ Z W(j1,00),k (|2 * gy 0, [ % &5) What is the nature of the
J1,01 . .
» recombination?
Y W00 (1T X g 0] 5y 0, | * D)
j2,71,01,02
Fourier along 61: W, wy, )k = Fo (w, .y n) (wey)

Fourier along (01,02): w(jl,jz,wel,w@),k = F(91’92)(w(jl,jg,.,.),k)(CU@l7w92)
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Ref.: Scaling the Scattering Transform:
Deep Hybrid Networks I l a S ; S 1 S O w
— 10°

EO, E Belilovsky, S Zagoruyko

1.0
3
0.8 F
A 2
ol D1(wp,) = Y |5, o).k
E | < 0 kajl
%ol 3 ] 2
. 92(w917w02> — Z ’w(j17j27w917w92)7k‘
2T k7j17j2
-3
0.0 .
-3 0 3
Wo,
. 1 . . o~ method: similar to AlexNet
e Invariance to rotation is explicitly learned. first layer analysis
0-35 ! ! ! | | | ! ! ! | | |
0.30F - -------- - Of"derll . -------- --------- -------- . - O?der? .
PPN [ R R U U U R 1 T
. .
B 0.20 e rrnde e SR
NP [0 S N WS R ] | N S
ool = N
005 SO S A B 0 R e B Fourier basis
0'0(()).00 0.02 0.04 0.06 0.08 0.10 0.|12 Oi4 0.00 0.02 0.04 0.06 0.68 O.I10 0.I12 O.I14 SpaI‘SiﬁeS the Operator!
Amplitude Amplitude
e Thresholding 80% of the coefficients in Fourier: 2% acc. loss

Can we find more complex invariance than rotation?
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iNs - ]Jdentifying the variabilities?

e (CNNs exhibit some covariance w.r.t. variabilities:

==
o = - -
e =@ =z - : o
* = bd b | - - . -
- h iq ~ ': .= J i . ' . — o -
léfa = %BE uﬂ'<.{% :
) - - - a3 i 1 a1 - ]
~ H;h».‘.:, - = -‘F :.f!_.r_l—i ’:"Aj iy e -
(c) Object color (d) Background color (a) Lighting (b) Scale

Ref.: Understanding deep features with computer-generated imagery, M Aubry, B Russel

e If we understood how this is done, we could use this to engineer
CNN with nice properties:

|PLx — Px||
sup

L || Lz — x|
= ®Lx ~ ¢z + 0, PL + o(||L||)

A linear operator

< oo = 4 "weak” 0,P

Displacement [,

[ ® @ > [ °
+ projection o
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ENSIntroducmg structures to understand better

e SLE learned invariance: invariants to group are
explicitly built via convolutions.

e Are all the non-informative variabilities linked to
group actions?’

e (Can we structure the channel axis as we did?”

e We will apply n-d convolutions, with n>3

Thkk(Up,...,Up) = Z (UL — U1y enny Uy, — Uy ) k(01 ...

V1y.eeeyUn

Beyond the order of scattering convolution (i.e. 3)

, Un)
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ENSObJectlve Flattening the variability

Standard CNNs layers Organised
Layers

Defining an order
on layers of neurons

_I___)\z \
| -

o e }\
o ENEEEIE

ol 1] [
mERENED

A= (A1, A2) |
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Symmetry group hypothesis

Ref.: Understanding deep
convolutional networks
S Mallat

To each classification problem corresponds a
canonic and unique symmetry group G:

Vx,Vg € G, Pxr = ®g.x \

High dimensional

We hypothesise there exists Lie groups and CNNs

such that:
GocGicCc..cGjyCd@G

Vg, € Gj,¢0i(g9;.x) = ¢;(x) where z; = ¢;(z)

Examples are given by the euclidean group:

G() — RQ,Gl — G() X SLQ(R)
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S Multiscale Hiearchical CNN

Ref.: Multiscale Hierarchical Convolutional Networks
J Jacobsen, EO, S Mallat, Smeulders AWM

e CNN that is convolutional along axis channel:

N

$j+1(1}1, °“7Ujavj—|—1) — Pj(xj kLot wvjﬂ)(vl’ '“’Uj) ﬁ
$J(UJ) — Z ZL’J—1(U1, ---,”UJ—1,UJ)
U1,...,VJ—1 T To
o — — /S —
o,

e For T, we refer to the variable V;j as an attribute

Understanding deep

that discriminates previously obtained layer. .o o

S Mallat

 Representation is finally averaged: invariant along
translations by v.
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S Hiearchical CNN: numerical results

- HCNN

We demonstrate 12
a reduction in #param 6

while 91% on CIFAR10 0

#M params

Translations are present in the last layer z.j(vs—1,v7)
Bird |

IIIIIII But not in the previous layers
Bird 2 _ Incorporating more structures?
nwﬂuﬁ S Modelization issue?

Ref.: Multiscale Hierarchical Convolutional Networks
J Jacobsen, EO, S Mallat, AWM Smeulders



DATA

Conclusion

e The problem was to introduce and analyze structures in

CNNis.

e We demonstrate:
State-of-the-art performance without learning first layer

weights

CNN progressively contract
Scattering + CNN is a robust baseline
Implement a new class of CNN

Thank you!



