I am Edouard Oyallon, a postdoctoral researcher at the INRIA Lille, in the team SequeL, where I work in particular with Michal Valko. I obtained my PhD in October 2017 from the Département Informatique de l'Ecole Normale Supérieure under the supervision of Prof. Stéphane Mallat. Prior to it, I graduated from the ENS Cachan, campus de Rennes. I define myself as an applied mathematician, with coding skills.

My research interests are in the fields of computer vision, reinforcement learning and machine learning, and more generally signals that have a lot of geometric structure (text, sounds..). More precisely, I am interested in the mathematical foundations of deep learning techniques because they provide state-of-the-art results on many benchmarks. I try to interpret why such methods generalize from a training dataset to a testing dataset, by attempting to understand the underlying mechanisms to build geometrical and more complex invariants.I hate black box pipelines, and to be concise, the type of questions I try to solve is not “how to learn new deep features that discriminate this image as a dog”, but simply “why is your network understanding that this signal is a dog”. Answering such questions could help to make fundamental advances in science in a context where too much work is dedicated to techniques that give incremental improvements on standard datasets.

Recently, I am interested in the theoritical understanding of the deep reinforcement learning techniques that have led to breakthrough results in solving strategy games such as Go.

Feel free to send me any emails to discuss my work at __edouard[dot]oyallon[at]ens[dot]fr__. Here is a short CV, full CV available on request by email.

**News:**
I am co-organizing the NIPS Workshop: *Learning with Limited Labeled Data: Weak Supervision and Beyond*.

I will join the SequeL team at Lille, to work in particular with Michal Valko and Daniil Ryabko.

My GitHub.

- Oyallon, E. -
*Analyzing and Introducing Structures in Deep Convolutional Neural Networks*, "Thèse de doctorat", 2017, slides. - Oyallon, E., Belilovsky, E., and Zagoruyko, S. -
*Scaling the Scattering Transform: Deep Hybrid Networks*, ICCV 2017. https://arxiv.org/abs/1703.08961, poster - Jacobsen, J.-H., Oyallon, E., Mallat, S. and Smeulders, A.W.M. -
*Hierarchical Attribute CNNs*, ICML PADL 2017. http://padl.ws/papers/Paper%2034.pdf, poster - Oyallon, E. -
*Building a Regular Decision Boundary with Deep Networks*, CVPR 2017. https://arxiv.org/abs/1703.01775, poster - Oyallon, E. -
*A hybrid network: Scattering and Convnet*. https://openreview.net/pdf?id=ryPx38qge, reviews - Oyallon, E. and Mallat, S. -
*Deep Roto-translation Scattering for Object Classification*, CVPR 2015. http://arxiv.org/abs/1412.8659, poster - Oyallon, E. and Rabin, J. -
*An Analysis of the SURF Method*, IPOL 2015. http://www.ipol.im/pub/art/2015/69/ - Oyallon, E., Mallat, S. and Sifre, L. -
*Generic Deep Networks with wavelet Scattering*, ICLR 2014 workshop. http://arxiv.org/abs/1312.5940, poster

- 2018, Second year seminar ENSAE, slides
- 2017, Corporate Seminar Series with artfact
- 2017, Seminar at M2 StatML, slides
- 2017, Second year seminar ENSAE, slides
- 2014-2017, Teaching assistant, ENSAE, fundamental probability classes and calculus

- 2017, talk at cfm
- 2017, talk in the Torr Vision Group
- 2017, Paris Big Data, Télécom Paris Tech, slides.
- 2017, Leuven, seminar.
- 2017, "Groupe de travail", about deep learning, Rennes 1, invited by Adrien Saumard, full slides.
- 2017, Meetup at Rennes, France.
- 2016, Meetup at Pau, France.
- 2015, Journée DIM RDM-IDF, UPMC, France, talk (french).
- 2015, GREYC, France, slides.

- Scattering Networks in PyTorch, PyScatWave (2017) (ScatWave2.0 (2017), Lua Torch version). Pipelines for imagenet: Scaling Scattering (2017).

Collaboration with Eugene Belilovsky and Sergey Zagoruyko - Multiscale Hiearchical CNN (2017), software in TensorFlow and Keras

Collaboration with Jörn-Henrik Jacobsen - Deep Separation Contraction (2017), software in TensorFlow
- ScatWave (2016), software for Torch
- ScatNet (2013), ScatNetLight (2015), softwares for MATLAB